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Summary 
 
Experimental and quasi-experimental methods are increasingly used to evaluate the impact of 
development interventions. However, unless these methods use power calculations to 
determine sample sizes correctly, researchers are likely to reach incorrect conclusions about 
whether or not the intervention works. 
 
This manual presents the basic statistical concepts used in power calculations for experimental 
design. It provides detailed definitions of parameters used to perform power calculations, useful 
rules of thumb and different approaches that can be used when performing power calculations. 
The authors draw from real world examples to calculate statistical power for individual and 
cluster randomised controlled trials. This manual provides formulae for sample size 
determination and minimum detectable effect associated with a given statistical power. The 
manual is accompanied by the 3ie Sample size and minimum detectable effect calculator©, a 
free online tool that allows users to work directly with the formulae presented section 7 in the 
manual.   
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Note to readers 
 
This manual provides straightforward guidance about the process of performing power 
calculations for experimental impact evaluation research designs. It is written for specialists and 
non-specialists involved in the design and implementation of impact evaluation studies with a 
minimal background in impact evaluation and basic knowledge of statistics. The focus is on 
experimental evaluation design. Having a manual that covers sample size calculations for quasi-
experimental designs would also be useful. 3ie intends to develop tools for those designs in the 
near future. 3ie is also investigating how to further develop the Microsoft Excel®-based 3ie 
Sample size and minimum detectable effect calculator© as an online resource. 
 

http://www.3ieimpact.org/media/filer_public/2016/03/22/3ie-sample-size-minimum-detectable-effect-calculator.xlsx
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1. Introduction 
 
Since the 1990s, researchers have increasingly used experimental and quasi-experimental 
primary studies – collectively known as impact evaluations – to measure the effects of 
interventions, programmes and policies in low- and middle-income countries. However, we are 
not always able to learn as much from these studies as we would like. One common problem is 
when evaluation studies use sample sizes that are inappropriate for detecting whether 
meaningful effects have occurred or not. To overcome this problem, it is necessary to conduct 
power analysis during the study design phase to determine the sample size required to detect 
the effects of interest. Two main concerns support the need to perform power calculations in 
social science and international development impact evaluations: sample sizes can be too small 
and sample sizes can be too large.  
 
In the first case, power calculation helps to avoid the consequences of having a sample that is 
too small to detect the smallest magnitude of interest in the outcome variable. Having a sample 
size smaller than statistically required increases the likelihood of researchers concluding that 
the evaluated intervention has no impact when the intervention does, indeed, cause a significant 
change relative to a counterfactual scenario. Such a finding might wrongly lead policymakers to 
cancel a development programme, or make counterproductive or even harmful changes in 
public policies. Given this risk, it is not acceptable to conclude that an intervention has no 
impact when the sample size used for the research is not sufficient to detect a meaningful 
difference between the treatment group and the control group. 
 
In the second case, evaluation researchers must be good stewards of resources. Data 
collection is expensive and any extra unit of observation comes at a cost. Therefore, for cost-
efficiency and value-for-money it is important to ensure that an evaluation research design does 
not use a larger sample size than is required to detect the minimum detectable effect (MDE) 
of interest. Researchers and funders should therefore use power calculations to determine the 
appropriate budget for an impact evaluation study. 
 
Sample size determination and power calculation can be challenging, even for researchers 
aware of the problems of small sample sizes and insufficient power. 3ie developed this resource 
to help researchers with their search for the optimal sample size required to detect an MDE in 
the interventions they evaluate.  
 
The manual provides straightforward guidance and explains the process of performing power 
calculations in different situations. To do so, it draws extensively on existing materials to 
calculate statistical power for individual and cluster randomised controlled trials. More 
specifically, this manual relies on Hayes and Bennett (1999) for cluster randomised controlled 
trials and documentation from Optimal Design software version 3.0 for individual randomised 
controlled trials. 
 
The manual is organised into sections. Following the Introduction, Section 2 presents basic 
statistics concepts and discusses statistical rationale. Section 3 discusses the concept of power 
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calculation and its applications. Sections 4 and 5 are developed around rules of thumb and 
common pitfalls in running power and sample size calculations. Section 6 presents formulae to 
calculate MDEs and sample sizes for experimental impact evaluation designs. The choice of 
formula depends on the identification strategy used, units of assignment and observation, and 
the type of outcome variable. Section 7 covers experimental design.  Throughout the manual, 
each formula is followed by an example to make the concepts more tangible and intuitive.  
 
Section 7 is designed to be used with an accompanying Microsoft Excel®-based customised 
worksheet, the 3ie Sample size and minimum detectable effect calculator©, so that readers can 
run their own power analyses.   
 
2. Basic statistics concepts: statistical logic 
 
This section provides a background explanation of the basis for determining an appropriate 
sample size for evaluating the effectiveness of an experiment, intervention or treatment. It 
covers the following concepts: hypothesis testing, null and alternative hypotheses, type I error, 
type II error and p-value. This section may not be useful for readers already familiar with 
statistics and data analysis, but we encourage most users to read it. 

As Prajapati, Dunne and Armstrong (2010) indicate, anyone who wants to calculate sample size 
and determine statistical power must first understand the notion of hypothesis testing. Here is 
a typical example that we can use to show how to draw a hypothesis and test it: 

Let’s assume that a developing country government is planning to launch an innovative 
youth employment scheme policy to increase employment rate from 40 per cent to 60 
per cent in 3 years among young people aged between 23 and 32 years old. As the new 
policy has never been implemented in the country, the change expected (a predicted 
increase in employment rate) is considered as a hypothesis in statistical terms. In this 
setting, the government needs to find out whether the hypothesis is likely to be met in 
reality. Hence the government requests an evaluation design that would allow the 
probability of finding a true positive – when there really is an effect of a given size – to be 
at least 80 per cent (power) and the probability of making a false positive to be 5 per 
cent (significance level). 

We would start by admitting the hypothesis that any intervention implemented would change 
something in that environment, and therefore it would yield some effect. This rationale would be 
applied to the youth employment policy. The core question is whether the hypothesised change 
is merely due to chance or if it is specifically caused by the intervention. It is also essential to 
indicate the direction and magnitude of the expected or desired change. This step is crucial 
because it contributes to assessing the relevance of the change for policy and programming 
decisions.  

By convention, statisticians start from the premise that any effect observed from an intervention 
is caused by chance. In the case of impact evaluation, this premise would be that the treatment 
group is not distinguishable from the control group. Statisticians refer to this premise as the null 

http://www.3ieimpact.org/media/filer_public/2016/03/22/3ie-sample-size-minimum-detectable-effect-calculator.xlsx
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hypothesis. Obviously, the null hypothesis (noted H0) may not be true. The policy being 
evaluated (for example, a youth employment scheme) may have caused the observed effect, 
and therefore a change in the outcome of interest (employment rate) would not be due to 
chance alone. The contrast to the null hypothesis is the alternative hypothesis. It states that 
the effect observed from an intervention did not occur just by chance, but is likely to be a real 
effect attributable to the intervention. This means that, given the assumptions of the 
identification strategy,1 any change observed in employment rate would be the result of the 
government’s new policy on youth employment. 

If the difference in employment rates recorded before and after the implementation of the policy 
is not due to chance alone, then H0 is rejected and the alternative hypothesis is favoured or 
accepted. Another way of reporting this change is that the effect of the intervention was 
statistically significant, meaning that the alternative hypothesis is accepted and the null 
hypothesis rejected. Similarly, a report of insignificant effects means that the null hypothesis 
cannot be rejected. In failing to reject the null hypothesis, we cannot conclude that the observed 
effects were due to anything but chance. 

Deciding whether to accept or reject H0 is based on a criterion or threshold chosen by the 
researcher. Different disciplines have different norms for setting this criterion, known as a 
significance level, from which equivalent confidence level is derived (and vice versa). 

The significance level gives the probability of a false positive result – a result that indicates that 
a given condition is present when it is not, or that a treatment has an effect when it does not. In 
other words, the significance level is the probability of detecting an effect that is not present. 
The significance level is known as α (alpha), and the confidence level is defined as (1 − α). The 
confidence level is the probability that we do not find a statistically significant effect if the 
treatment effect is zero. In social science, three significance levels (values of α) are commonly 
used: α = 10 per cent, α = 5 per cent and α = 1 per cent. Therefore, three confidence levels are 
commonly used: 90 per cent, 95 per cent and 99 per cent. These values would be considered 
far too large in a field such as genetics or aeronautics, but are suitable for most social science 
research. 
 
Returning to the case of the youth employment programme, where the youth employment rate is 
the outcome of interest, a confidence level of 95 per cent would indicate that, if the new 
employment policy is repeated in similar settings 100 times, then 95 times out of 100 it would 
produce an effect that would be less than or equal to 1.96 times the standard deviation of the 
youth employment rate before the intervention. Hence, in 95 per cent of cases, the null 
hypothesis would be accepted, and we would conclude that the change observed occurred by 
chance and was not specifically caused by the youth employment programme. 
 
A confidence level of 95 per cent also implies that if the new employment policy is repeated in 
similar settings 100 times, in ninety five cases it would produce an effect that would be either 
less than or equal to 1.96 times the standard deviation of the outcome of interest before the 

 
1 An identification strategy in impact evaluations is the strategy designed to identify the effects caused by 
an intervention or policy separately from any other factors. 
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intervention. That is to say, in a maximum of five cases the new employment policy would 
produce an effect that would be larger than 1.96 times the standard deviation of the outcome of 
interest before the intervention. In conclusion, if the confidence level is set as large as 95 per 
cent, the null hypothesis would be rejected in a maximum of five cases out of 100, which is a 
5 per cent significance level. 

Another important term in statistics is the p-value. As indicated by Goodman (2008), the p-value 
is a measure of statistical evidence. It is defined as the probability of the observed result, or a 
more extreme result, if the null hypothesis were true. In algebraic notation, it is expressed as 
Prob (X ≤ x | H0), where X is a random variable corresponding to some way of summarising data 
(such as a mean or proportion), and x is the observed value of that summary in the empirical 
data. This is shown graphically in Figures 1 and 2. The curve on Figure 1 represents the 
probability of every observed outcome under the null hypothesis. The p-value is the probability 
of the observed outcome (x) plus all ‘more extreme’ outcomes, represented by the shaded ‘tail 
area’ (Goodman 2008). 

Figure 1: Graphical depiction of the definition of a one-sided p-value 

 

 

 

 



5 
 

Figure 2: Graphical depiction of the definition of a two-sided p-value (adapted from 
Goodman 2008) 

 

 

As discussed previously, the significance level (α) is set as the basis for whether the null 
hypothesis will be rejected or not. The p-value allows us to make the same decision but it is 
calculated, not set, on the basis of actual data collected from the study. 

The nuance between the significance level and the p-value resides in the fact that the 
significance level is set or decided by researchers based on reasoning and the desired 
confidence interval. But the p-value is calculated based on actual data collected from the study 
and gives the actual confidence interval of the findings. 

Hence the decision to accept or reject the null hypothesis is based on comparing the p-value 
with the significance level. When the p-value is smaller than the significance level, the null 
hypothesis is rejected. When the p-value is larger than the significance level, the null hypothesis 
is accepted. 

A researcher can make two types of error when deciding whether to accept or reject the null 
hypothesis: either H0 is wrongly rejected (type I error) or it is wrongly accepted (type II error). 

By making a type I error, the researcher states a false positive, concluding that an effect or 
relationship does exist and does not occur just by chance when, in reality, the observed effect 
took place only by chance. 

On the other hand, by making a type II error, the researcher states a false negative, concluding 
that any effect observed is due to chance and therefore there is no true effect of the 
intervention, but in reality the intervention does cause an effect that cannot be attributed to 
chance. 
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With respect to symbols, note that α, indicates the significance level, and it denotes the 
probability of making a type I error; the probability of making a type II error is denoted by beta 
(β). In the same line, the probability of correctly rejecting H0 is denoted (1 − β) and is called 
power. These concepts are summarised in Figure 3. 

Figure 3: Power: from what we know to what we decide and what happens in reality 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Power calculation: concept and applications 
 
Power analysis and power calculation are not exactly the same, even though the terms are used 
interchangeably in some circumstances. 
 
Power calculation is the determination of the minimum sample size required to detect (that is, 
to find statistically significant) a minimum effect, which is set ex ante, given the specific 
parameters set for the rest of the study, such as power, significance level and sampling 
approach. Power calculation is a straightforward process – based on mathematical formulae –
when all parameters are known. 
 
Power analysis is the decision-making process about sample size, given real-world constraints, 
including budget, time, accessibility of samples of interest, distance, surveyor safety concerns, 

What we see 
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What really happens in the eligible population 

P (wrongly accept H0)  
= β    TYPE II ERROR 
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P (wrongly reject H0)  
= α TYPE I ERROR 

P (correctly reject H0)  
= 1 − β 
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errors 
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politics and the policy-relevant magnitudes of effects in policy-relevant time frames. Power 
analysis tries to optimise sample size and power against these constraints. Though power 
calculation is an ex ante process, there are instances when ex post power calculations can be 
performed to assess whether the lack of impact is due to the sample size, inherent to the 
intervention itself, or due to some other reason such as implementation failure or contamination. 
 
Based on Gleason (2010), power analysis addresses three main questions: 
 

1. How likely is it that a particular design will detect an impact or effect size that the 
intervention being examined is likely to produce in the study time frame? 

2. Given the research design, how large does the true impact of the intervention need to be 
in order to detect it? In other words, what is the MDE for a given design? 

3. Given the true impact that an intervention is likely to produce, how large does a sample 
have to be in order to detect it? 
 

Altogether, power analysis addresses the following broad question: accounting for the true size 
of the effect an intervention is likely to produce in a given time frame, and given all of the 
constraints, what is the most efficient sample size in which a meaningful effect can be detected? 

3.1 Parameters required to run power calculations 
 
Power calculations depend on a number of measurable parameters that are important to clarify 
during the research design phase. Some of these parameters are discretionary (chosen by the 
evaluator and under their control) and others are inherent (chosen by the evaluator but not 
under their control). Although the choice of some parameters relies on rules of thumb, it is 
advisable to discuss these with a statistician and justify the choice of each parameter. This is 
especially important for inherent parameters (see also Section 3.1.3). 

3.1.1 Definition of power calculation parameters 
 

This subsection starts with a brief review of hypothesis testing, followed by the definition of 
discretionary and inherent parameters. 
 
Hypothesis testing is the use of statistical methods to determine the probability that a specific 
hypothesis is true or not. The first step of hypothesis testing consists of defining the null 
hypothesis and the alternative hypothesis. 
 
In impact evaluation, the null hypothesis states that there is no difference between mean of the 
outcome variable of the treatment group and the mean of the same outcome variable in the 
control group that should be attributed to anything other than chance. That is, there is no causal 
effect of the programme. The alternative hypothesis states that there is a difference between the 
two groups. As it is not possible to observe the effect of an intervention before it takes place, it 
is therefore not possible to test the alternative hypothesis. Hence researchers test the null 
hypothesis by default (including for impact evaluation studies). 
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3.1.2 Discretionary parameters 
 
a. MDE: Defined by Bloom (1995) as the smallest effect that, if true, has an X per cent chance 

of producing an impact estimate that is statistically significant at the Y level; where X is the 
statistical power of the experiment and Y is the level of statistical significance. 

 
i. Significance level, Y above, but generally denoted α, is the probability of 

concluding that there is an impact of the intervention when actually there is no 
impact. This is known as the probability of making a type I error. It is commonly 
set between 90 percent and 95 percent in social sciences. 
 

ii. Statistical power, X above, but formally expressed as (1 − β), is the probability of 
correctly concluding that an intervention has no statistically significant effect. In 
other words, it is the probability of not committing a type II error. It is commonly 
set as 80% or 90% in social sciences. 

 
Note that MDE should not be an ad hoc choice. Rather, it should be a choice informed by cost-
efficiency considerations, policy and political considerations, time constraints, context, existing 
theory, models and empirical evidence. 
 
It is essential to realise that an MDE is itself a function of time, as the effect of an intervention 
would generally vary (increase, decrease or plateau) over time. Therefore, in the process of 
defining or setting an MDE, we need to have a good idea of the effect trajectory as a function of 
time: how would the effect vary throughout time? What is the trajectory of the effect measured? 
Is it a short-term, medium-term or long-term effect? After how much time would the effect be 
expected to take place? These crucial questions inform the decision about when to conduct 
endline data collection to measure the MDE that the intervention is expected to have. 
 

Type I error arises when we mistakenly reject (fail to accept) the null hypothesis. That is, 
we conclude that an effect or relationship exists and does not occur just by chance, 
while in reality, such an effect does not exist. In practical terms, this would be deciding 
that an ineffective treatment actually works, thereby wasting resources. 

b. Type II error arises when we mistakenly accept (fail to reject) the null hypothesis. That is, it 
is the probability of wrongly concluding that there is no impact of an intervention beyond 
what would occur due to randomness. The probability of making a type II error is often 
denoted β and typically set as 10% or 20% in social science. In practical terms, this would 
be deciding that a treatment does not have a causal impact when it actually does and 
therefore potentially discontinuing a useful treatment. 

 
c. Statistical tests can be performed as one-sided or two-sided: specifying which will be used 

is important for power calculations. One-sided tests require smaller sample sizes compared 
with two-sided tests. Therefore, the use of the former should always be justified based on 
prior knowledge about the expected effect, and not merely for the sake of reducing the 
sample size required to detect the expected effect. 
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i. One-sided statistical tests are used when the alternative hypothesis is 
expected to be unidirectional. That is, the researcher can convincingly argue that 
the intervention is expected to either raise or lower the value or occurrence of the 
outcome of interest. A unidirectional hypothesis test is chosen when the 
researchers can predict in which way (positive or negative) the intervention is 
expected to have an effect. 
 

ii. Two-sided statistical tests are used when the alternative hypothesis is non-
directional. In other words, such tests are used when researchers cannot predict 
whether the intervention will have a positive or negative impact, but they expect 
that there will be an impact.  

 
d. The proportion of the study sample that is randomly assigned to the treatment group: 

Though optimisation of statistical power suggests 50/50 treatment/control group allocation 
(Bloom 1995), there are conflicted cases in which there is a trade-off between optimising 
statistical power and following a policymaker’s suggestion to keep the number of 
participants assigned to the control group to a minimum. In such a trade-off, the resulting 
proportion of the sample assigned to treatment and control may be unbalanced (60/40; 
70/30; 80/20) at the expense of statistical power but for the sake of budget and political 
constraints. 

 
3.1.3 Inherent parameters 
 

a. Mean: In this case, the arithmetic mean of a sample, 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛, is the sum of the 
sampled values divided by the number of items in the sample. 
 

b. Standard deviation of the mean (standard error) is used for power calculations, 
calculated for the main outcome variable in the absence of the intervention. 
 

c. Intra-cluster correlation (ICC) is a measure used when sampling is based on clusters 
to capture the relatedness of data collected within a cluster. This is done by comparing 
the variance within clusters with the variance between clusters. 
 

d. Coefficient of variation (R2) is the proportion of the variance in outcome that is 
explained by the explanatory variables included in the prediction model. 
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3.1.4 Definition of other factors affecting power calculation: attrition, compliance, take-
up 

 
a. Attrition refers to a reduction of the initial sample size involved in a study, which means 

that outcome data cannot be collected for all units of observation. Attrition may occur as 
a result of migration of some participants from the study area, their refusal to continue 
participating in the research, their death, etc. Attrition affects the magnitude of statistical 
power as it decreases the sample size. It may also affect internal validity, if attrition is not 
randomly distributed across the treatment and control groups. It is always better to 
anticipate the potential attrition rate during the evaluation preparation phase and account 
for it through prudent oversampling at the beginning of the study. It is also advisable to 
account for attrition by oversampling in any particular subgroup (whether treatment or 
control) according to that subgroup’s likelihood of attrition. 
 
For example, a maternal and neonatal nutritional programme in Benin provided 
multivitamin tablets and education about infant nutrition to pregnant women, to improve 
the nutritional health status of newborns. Eligible women were required to visit health 
centres to access the benefits of the programme. The Ministry of Health commissioned 
an impact evaluation that required 75 treatment villages and 75 control villages. During 
baseline data collection, 750 women took part in the survey. However, only 680 women 
took part in the final data collection. In this case, the initial sample of 750 women shrunk 
to 680 women, because 70 women could not be surveyed as the result of attrition. 

 
b. Compliance refers to the units of observation in a study sample obeying by the 

treatment (or no treatment) status assigned to them. Some people in the treatment 
group will not actually use the treatment, while some in the control group will try to 
access the treatment. For example, a maternal and neonatal nutrition programme in 
Benin provided multivitamin tablets and education about infant nutrition to pregnant 
women, to improve the nutritional status of newborns. Eligible women were required to 
visit health centres to access the benefits of the programme. The Ministry of Health 
commissioned an impact evaluation that required 75 treatment villages and 75 control 
villages. However, in the course of the programme implementation, it appeared that not 
all the women with children aged under five in the treatment villages visited the health 
centres. Therefore, only some women received the intervention. In consequence, there 
is only partial compliance, which has an implication for take-up of the programme in the 
treatment villages (which will be discussed below). 
 
A critical consequence of non-compliance to an assignment group is that estimates of 
the true treatment effect may be biased. In the example above, if some women in the 
treatment group did not access the programme, while others in the control villages did 
receive the intervention, outcome measures in both groups would not depict the true 
effect of actual assignment status (treatment or control). Instead, it would show a 
confounded effect, which would yield biased estimates with low power because the 
study would be less likely to conclude correctly that the intervention had no statistically 
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significant effect. The power decreases because the real sample size of the study 
reduces, and the standard error of the estimation of the nutrition status of new-borns 
increases. 
 

c. Take-up is a measure of compliance in the treatment group, but in relative terms. In 
general, take-up is expressed as the percentage of those who use or access the 
treatment among people who were offered the treatment. Take-up is a critical parameter 
in power calculations, as a low take-up decreases the sample that is actually treated. If 
this low take-up is not accounted for when determining the sample size, it can reduce 
the expected power magnitude because the standard error of the outcome measured 
would increase. Let’s consider a programme to access healthcare that was offered to 
750 women and only 630 claimed the benefits of the programme. In that case, take-up 
was 84 per cent [(630 / 750) * 100]. 
 

It may seem that compliance and take-up refer to the same notion but they are different. 
Compliance is when each unit of observation follows and does what is required according to his 
or her assignment status. Take-up is used to indicate the use of the treatment among 
beneficiaries. 
 
3.2 Statistical power and sample size determination 
 
As previously indicated, statistical power is defined as the probability of correctly rejecting the 
null hypothesis. More specifically, power is calculated based on the primary outcome variables 
(first-order outcome variables) and not necessarily on secondary outcome variables. 
 
Considering the example of the youth employment scheme, let’s assume that the evaluation 
team set 80 per cent power for the evaluation findings, which implies that they have an 80 per 
cent chance of correctly concluding that an intervention has no statistically different effect from 
what would have happened in the absence of the scheme. If the research team concludes that 
the new youth employment policy has significantly increased the employment rate by 20 per 
cent, which is the MDE, it implies that in 80 per cent of similar but independent contexts where 
the government might implement the policy, it is likely that the change in employment rate would 
be at least the MDE. 
 
Technically, power calculations entail estimating and evaluating the minimum effect that is 
detectable at a designated level of statistical significance and power. As expressed in Bloom 
(1995), most of the definitions of power calculations refer to the minimum sample size required 
to detect the smallest effect that, if true, has an X per cent chance of producing an impact 
estimate that is statistically significant at the Y; where X is the statistical power of the 
experiment and Y is the level of statistical significance. 
 
Three approaches may be considered in deciding the sample size required for a study: MDE 
approach, power determination approach and sample size determination approach. 
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The MDE approach consists of knowing the desired level of power, the sample size that the 
study can afford, and the minimum effect that can be detected for a given sample size. In most 
cases, the sample size is adjusted to reach the expected MDE. 
 
Based on the power determination approach, researchers determine the power that a study 
would have considering an expected MDE, and assuming a hypothetical sample size. Using this 
approach, the sample size would be adjusted so that the expected power is reached. 
 
The sample size determination approach requires clearly setting the power beforehand, as 
well as the MDE that the intervention is expected to have. This approach is a straightforward 
way to determine the minimum sample size required to meet power level and MDE set for the 
study. 
 
In this paper, we use the MDE approach and the sample size determination approach, as they 
seem to be the focus of most researchers and they are more easily understood by policymakers 
in general. 
 
Power calculations using the MDE approach use the following the formulae: 

𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑡𝑡1−𝛼𝛼 2�
+ 𝑡𝑡1−𝛽𝛽� 𝑒𝑒 

 
MDE Minimum detectable effect 
𝛼𝛼

2�  Rate of type I errors (false positives) 
(Typically in social science, 𝛼𝛼 2�  = 2.5%) 

    β Rate of type II errors (false negatives) 
(Typically in social science, β = 10 to 20% which translates to 
power = 80 to 90%)  

𝑒𝑒 Standard error of the estimated effect 
 
Looking at the formula, it can be seen that whatever design is used in a study, MDE is a 
function of t-values and standard error of the estimated effect. These t-values are 
straightforward and quite easy to find in most statistics or econometrics books. Table 1 provides 
values of different levels of statistical power and statistical significance. However, the most 
critical, sensitive and sometimes complex data to obtain, in order to run a power calculation, are 
standard errors of estimated effect of the intervention on the outcome. Standard error is 
determined by sample size, sampling approach (simple random sampling or multiple stage 
random sampling) and variance of the estimated effect. 
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Table 1: MDE as a multiple of the standard error of the impact estimate for different levels 
of statistical power and statistical significance 

   Significance level 

Statistical power  .10  .05  .01 

One-sided hypothesis test       
90%   2.56  2.93  3.61 

80%   2.12  2.49  3.17 
70%   1.80  2.17  2.85 
        
Two-sided hypothesis test        
90%   2.93  3.24  3.86 
80%   2.49  2.80  3.42 

70%   2.17  2.48  3.10 
Source: Bloom (1995) 
 
Considering a simple random sampling, the standard error is estimated as illustrated here: 
 

𝑒𝑒 = �2𝜎𝜎2

𝑛𝑛
 

 
𝑒𝑒 Standard error of the outcome  
𝑛𝑛 Sample size of each group 
𝜎𝜎2 Variance of the outcome 

– for a prevalence, 𝜎𝜎2 = P(1−P) 
 
This assumes treatment and control groups of the same size, the same variance and selected 
using a simple random sampling approach. 
 
However, when the sampling approach is, for example, a two-stage random sampling, it is 
critical to account for design effect, due to ICC that increases the standard error of outcomes of 
interest and would consequently increase the minimum effect that the design could detect. 
Therefore, the larger the standard error, the lower the statistical power. This is illustrated in 
Figures 4, 5 and 6 which were adapted from Muñoz (2013).The green area depicts the 
statistical power and becomes smaller and smaller (from Figure 4 to 5), as the standard error 
becomes larger and larger. Figure 7 combines all key parameters (α, type I error, type II error) 
to depict the concept of statistical power. 
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Figure 4: Depiction of power (in green) with large sample size 

 
 
Figure 5: Depiction of power (in green) with reduced sample size vis-à-vis Figure 4 

 
 
Figure 6: Depiction of power (in green) with much smaller sample size vis-à-vis Figures 4 
and 5 
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Figure 7: Graphical visualisation of critical statistical power and other key parameters 

 
 
In mathematical terms, standard errors increase if, instead of taking a simple random sample of 
n households, we take a two-stage sample, with k primary sampling units and m households per 
primary sampling unit (𝑛𝑛 = 𝑘𝑘 ∗ 𝑚𝑚), as depicted in the formula: 
 
 
 

𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇2 = 𝑒𝑒𝑇𝑇𝑆𝑆𝑇𝑇2 [1 + ⍴(𝑚𝑚− 1)] 
 
 

 

 
 

3.3 How to run power calculation: single treatment or multiple treatments? 
 
A power calculation involves determining the sample size required to test a null hypothesis (H0) 
with sufficiently large power (minimum of 80 per cent in social science). That means a 
researcher should always first list all the primary null hypotheses (based on primary outcomes) 
that a study plans to test, and then determine the sample size required for each. The largest 
sample size from this list should be considered for the study (that is, it is the preferred sample 
size without taking into account other factors such as budget and timing). The logic behind 
power calculation is the same whether a study has one, two, or multiple treatment arms, but the 
calculation does need to account for the different treatment arms. 
 
For example, in a multiple treatments evaluation design, a research team is planning to evaluate 
the most effective approach to increase girls’ enrolment, attendance and educational 
performance in secondary school. Three approaches are selected by the government: supplying 
a free midday meal to schools, granting a bursary to all schoolgirls, and building toilets and 
sanitation infrastructure in schools for girls. There are four treatment groups in the study: 

Cluster effect 

Intra-cluster 
Correlation 

TSS: Two-stage sample 
SRS: Simple Random Sample 
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schools with no treatment (status quo), schools that supply a free midday meal, schools that 
grant a bursary to girls, and schools equipped with toilets and sanitation infrastructure. The 
sample size determination will consist of listing the primary null hypotheses, calculating the 
required sample size in each case and selecting the largest sample size calculated to conduct 
the study. 
 
With respect to midday meal supply, the following are examples of primary null hypotheses 
that can be tested: 

H0 a: Supplying midday meals to schools has no effect on school enrolment for girls 
compared with the effect of no treatment. 
H0 b: Supplying midday meals to schools has no effect on girls’ attendance rates 
compared with the effect of no treatment. 
H0 c: Supplying midday meals to schools has no effect on girls’ educational performance 
compared with the effect of no treatment. 

 
With respect to granting bursaries to girls, the following primary null hypotheses can be 
tested: 

H0 d: Granting a bursary to school girls has no effect on school enrolment for girls 
compared with the effect of no treatment. 
H0 e: Granting a bursary to school girls has no effect on girls’ attendance rates compared 
with the effect of no treatment. 
H0 f: Granting a bursary to school girls has no effect on girls’ educational performance 
compared with the effect of no treatment. 

 
With respect to building toilets and sanitation infrastructure, the following primary null 
hypotheses can be tested: 

H0 g: Building toilets and sanitation infrastructure in schools has no effect on school 
enrolment for girls compared with the effect of no treatment. 
H0 h: Building toilets and sanitation infrastructure in schools has no effect on girls’ 
attendance rates compared with the effect of no treatment. 
H0 i: Building toilets and sanitation infrastructure in schools has no effect on girls’ 
educational performance compared with the effect of no treatment. 

 
With respect to the comparison between the effectiveness of midday meal supply and 
bursary policy, the following null hypotheses can be tested: 

H0 j: Granting a bursary to school girls has no effect on girls’ school enrolment compared 
with the effect of supplying midday meals to schools. 
H0 k: Granting a bursary to school girls has no effect on girls’ attendance rates compared 
with the effect of supplying midday meals to schools. 
H0 l: Granting a bursary to school girls has no effect on girls’ educational performance 
compared with the effect of supplying midday meals to schools. 
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4. Rules of thumb for power calculation 
 
Even though power calculation is a technical task, it is also true that there are a number of 
rules of thumb that are applied and can always serve as guidance: 

• When power increases, the probability of finding a true impact of the intervention (if it 
exists) increases. In social science, researchers aim to have at least 80 per cent power 
which means allowing 20 per cent chance of committing a type II error. 

• The larger the sample size, the smaller the standard error, and therefore the higher the 
power. 

• The smaller the MDE, the larger the required sample size. 
• For any given number of clusters, the larger the ICC, the lower the power. 
• For any given number of units of observation per cluster, the larger the number of 

clusters, the higher the power. 
• Increasing the units of observation per clusters will generally not improve power as much 

as increasing the number of clusters (unless ICC is zero). 
• ICC increases when observations within clusters are increasingly identical relative to 

other clusters, which lowers the number of independent observations and, effectively, 
the sample size. 

• Baseline covariates are used in model specification to increase the statistical power of 
the study because they reduce the standard error of outcome, and therefore increase 
the likelihood of reducing the minimum effect that the design can detect. 
 

5. Common pitfalls in power calculation 
 
This section indicates pitfalls that are commonly reported or pointed to with respect to power 
calculation in social science. Formulae presented in this manual are mainly limited to simple 
random sampling and two-level random sampling. For more complex designs, such as three-
level cluster design, formulae can be found in the literature and in the documentation of 
specialised software such as Optimal Design, G*Power or Stata. These software packages are 
useful for running power calculations; however, it is critical to read carefully the assumptions 
and other considerations behind each formula or command used in these packages. The 
researcher will need to tell the software whether you are working with binary or continuous 
outcomes and whether you are using simple random, multistage or stratified/blocked sampling. 
For example, the commands ‘sampsi’ and ‘sampclus’ are not interchangeable in Stata and do 
not yield the same results. To continue with common pitfalls, it may be useful to be aware of the 
following pitfalls: 
 

1. Sample size should be determined for all main outcome variables before a final decision 
on study sample size is made. For instance, in the case of the secondary school 
intervention mentioned in the section 3.3, it is not appropriate to run a power calculation 
only for school attendance when learning outcomes are also a main outcome of interest. 
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2. The MDE of an intervention is a function of the impact trajectory of the intervention over 
time. Therefore, it is essential to take into account the expected timeline of the 
intervention before deciding the magnitude of the MDE. 
 

3. Power calculations must account for ICC in the case of cluster sampling because ICC 
varies with sampling methods and therefore it influences the standard error that in return 
affects power. In other words, not all samples of the same size have equal power. 
 

4. If a study does not detect a statistically significant effect of an intervention, it does not 
necessarily mean that the study is underpowered. It may be because the intervention 
fails to deliver according to plan (implementation failure), or it is not the right intervention 
for the problem at hand. Do not blame lack of power for all statistically insignificant 
results. 
 

5. Attrition is a major threat to evaluation, because it decreases the size of the sample for 
which there is full information, and therefore reduces power. There is no genuine way to 
rectify sample size after attrition occurs. To minimise attrition, it is necessary to collect 
enough data to be able to track participants. To avoid the effects of expected attrition, it 
is advisable to oversample or take all necessary measures (without compromising the 
intervention) to avoid or limit attrition. 
 

6. Spillover and contamination are other ‘ghosts’ that bias estimates and therefore affect 
power. Spillover is when the control group is affected by the intervention through a 
different mechanism. Contamination is when the treatment or control groups are affected 
by a similar intervention during the study, which will bias the attributable effect estimates 
for the intervention studied. Study design and programme implementation should guard 
against spillover and contamination.  
 

7. Power calculation is run to decide on the sample size required for an evaluation study. It 
is an ex ante activity and not an ex post decision. When such calculations are run 
ex post, they can be used to check actual power but the purpose is completely different 
from that of power calculation. In an ex post power check, the objective is to determine 
the power of the study, given the actual sample size used for analysis but using the 
same values for all other parameters used while running ex ante power calculation. 
 

8. Using a randomised controlled trial as the identification strategy does not alone 
guarantee that power will be sufficient. 
 

9. Power calculation formulae or programming are not the same for continuous versus 
binary outcome measures. It is a mistake to use the same formula in each case. Even 
when using software packages, it is critical to specify the nature (continuous or binary) of 
the outcome variable of interest. 
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6. Power calculations in the presence of multiple outcome variables 
 
When testing the effect of an intervention on multiple outcome variables, it is probable that the 
researcher will find purely by chance a statistically significant effect of the intervention on a few 
outcomes. In fact, a significance level of 5 per cent means that the chance of erroneously 
finding a statistically significant impact is 5 per cent. For example, if you test the effect of your 
intervention on 20 different outcomes, and for all of them the null hypothesis is actually true, 
you’d expect about one of the tests to be significant at the p<0.05 level, just due to chance. 
Another way to present this is to calculate the probability of observing at least one significant 
result by chance when you have 20 hypotheses to test, and a significance level of 0.05. In this 
configuration: 
 
P (at least one significant result) = 1 − P (no significant result) 

= 1 − (1 − 0.05)20 

≈ 0.64 
 
Consequently, with 20 hypotheses to test, we have a 64 per cent chance of observing at least 
one significant result, even when the intervention has no significant impact on any of 20 
outcomes. 
 
Thus, when assessing the impact of an intervention on multiple outcomes, the idea of testing 
the impact of an intervention on each outcome using the standard value of significance level 
(0.05) may lead to erroneously finding a statistically significant impact when in fact there is no 
impact. 
 
Methods for assessing the impact of an intervention on multiple outcomes call for adjusting the 
value of the significance level, so that the probability of observing at least one significant result 
by pure chance remains low or below the desired significance level. 
 
The most popular method to estimate the value of the significance level when testing the impact 
of an intervention on multiple outcome variables is the Bonferroni correction. The Bonferroni 
correction sets the significance level cut-off at 𝛼𝛼/𝑛𝑛, where α is the standard significance level 
(0.05) and n is the number of outcomes. For instance, in the example above, to assess the 
impact of the intervention on 20 outcomes, and with the standard significance level of 0.05, the 
null hypothesis will be rejected only if the p-value is less than 0.0025 (0.05/20). Thus, for a study 
testing the impact of an intervention on 20 outcomes, the significance level that should be used 
is 0.0025. 
 
Given that the significance level is among the parameters used to perform power calculations, a 
change of the significance level will affect statistical power if other parameters are kept 
constant. The ultimate implication is that power calculations in the presence of multiple outcome 
variables will be affected and will be different from power calculations when assessing the 
impact of the intervention on one outcome variable. 
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With the example above, and with a significance level equal to 0.0025 and keeping other 
parameters used to perform power calculations constant, the study will have a reduced 
statistical power. In addition to the Bonferroni correction, there are other methods for adjusting 
the significance level to take into account that the study will evaluate the impact of interventions 
with multiple outcomes. In general, these adjustments result in a study with reduced statistical 
power if other parameters are kept constant.2 
 
We recommend that researchers adjust for the significance level when performing power 
calculations in the presence of multiple outcome variables. Researchers can use the Bonferroni 
correction to calculate the adjusted significance level to be used for power calculations because 
it is quite a straightforward method. However, the Bonferroni correction yields the most 
conservative value of the significance level among the correction methods (Schochet 2008). 
Consequently, the Bonferroni method leads to the most reduced statistical power and reduces 
the probability of rejecting the null hypothesis when it is false. Given the drawback of the 
Bonferroni method, we recommend that researchers consider their main and most critical 
outcome variables when they intend to use the Bonferroni correction method. 
 
7. Experimental design 

A Microsoft Excel® worksheet has been developed as an online supplement for this section. 
Users can enter values for different parameters to determine either the minimum sample size 
required or the MDE, depending on the design used. Results of examples used in this section 
are calculated using this online tool, the 3ie Sample size and minimum detectable effect 
calculator©. 

7.1 Individual-level randomisation  

In this section, we present formulae to calculate expected MDE as a function of sample size 
(among other parameters) for study designs where the intervention is randomly assigned to 
individual units of observation. In such a case, the unit of observation is the same as the unit of 
assignment. In addition to accounting for assignment approach, we account for the 
characteristic of the outcome of interest (continuous or binary) as this determines which power 
calculation formula to use. 

7.1.1 Single-level trials with a continuous outcome variable 
 
For a continuous outcome variable when the intervention is assigned to individual units, the 
following formulae are used. 
 
  

 
2 Schochet (2008) provides a very good description of different methods for adjusting the significance 
level when performing multiple testing and limitations of each of them. 

http://www.3ieimpact.org/media/filer_public/2016/03/22/3ie-sample-size-minimum-detectable-effect-calculator.xlsx
http://www.3ieimpact.org/media/filer_public/2016/03/22/3ie-sample-size-minimum-detectable-effect-calculator.xlsx
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MDE: 

𝛿𝛿 = (𝑡𝑡1+𝑡𝑡2)𝜎𝜎𝑦𝑦�
1

𝑃𝑃(1 − 𝑃𝑃)𝑛𝑛
 

 
Sample size: 

𝑛𝑛 = �
1
𝑃𝑃𝛿𝛿2

𝜎𝜎𝑦𝑦2
(𝑡𝑡1 + 𝑡𝑡2)2

−𝑃𝑃 + 1
� 

 
Table 2: Parameters required for single-level trials with a continuous outcome variable 

𝛿𝛿 Minimum detectable effect 

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑡𝑡1 t-value corresponding to the desired significance level of the test* 
𝑡𝑡2 t-value corresponding to the desired power of the design* 
𝜎𝜎𝑦𝑦 Standard deviation of the outcome variable 
𝑃𝑃 Proportion of the study that is randomly assigned to the treatment group 

𝑛𝑛 Sample size 
Note: * t-values are a function of specific sample size. Taking into account the central limit theorem and 
the law of large numbers, a minimum sample size assumption needs to be made to calculate precise 
t-values. Otherwise, users may purposively decide the value for t1 and t2. 

(1) t1 is the student’s t-critical value of the desired significance level of the test 
(2) t2 is the student’s t-critical value of the desired power of the design 
(3) 𝑡𝑡1−𝛼𝛼 2�

 is the student’s t-critical value of 1 − α/2 
(4) 𝑡𝑡1−𝛽𝛽 is the student’s t-critical value of 1 − β 
 

Example 
A research team is planning to do an experiment to determine if an apprenticeship programme 
increases annual earnings of youth in Kisumu, Kenya. Due to budget constraints, the study can 
only afford 1,000 participants. Fifty per cent will be assigned to the treatment group and the rest 
will be assigned to the control group. The research team is uncertain of the direction of the 
impact, so they opt to use a two-sided hypothesis test. They set the significance level at 0.05 
and decide to use 80 per cent statistical power.  
 
This example has the following parameter values: t1 = 1.96, t2 = 0.84, σy = 2,400 Kenyan 
shillings, p = 0.5 and n = 1,000, which yields MDE = 425.7 Kenyan shillings. 
 
7.1.2 Single-level trials (continuous outcomes) with covariates 
 
In this scenario, the same parameters hold but baseline covariates (explanatory variables) are 
also used, which can increase the statistical power of the study. 
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MDE: 

𝛿𝛿 = (𝑡𝑡1+𝑡𝑡2)𝜎𝜎𝑦𝑦���
1

𝑃𝑃(1 − 𝑃𝑃)𝑛𝑛
� (1 − 𝑅𝑅2)� 

 
Sample size: 

𝑛𝑛 = �
1
𝑃𝑃𝛿𝛿2

𝜎𝜎𝑦𝑦2
(𝑡𝑡1 + 𝑡𝑡2)2

−𝑃𝑃 + 1
{−𝑅𝑅2 + 1}� 

 
Table 3: Parameters required for single-level trials (continuous outcomes) with 
covariates 

𝛿𝛿 Minimum detectable effect 

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑡𝑡1 t-value corresponding to the desired significance level of the test* 
𝑡𝑡2 t-value corresponding to the desired power of the design* 
𝜎𝜎𝑦𝑦 Standard deviation of the outcome variable 
𝑃𝑃 Proportion of individuals randomly assigned to the treatment group 

𝑛𝑛 Sample size 
𝑅𝑅2 Proportion of outcome variance explained by level 1 covariate(s)3 

Note: * t-values are a function of specific sample size. Taking into account central limit theorem and the 
law of large numbers, a minimum sample size assumption needs to be made to calculate t-values. 
Otherwise, users may purposively decide the value for t1 and t2. 
 
Example 
A research team is planning to do an experiment to determine if an apprenticeship programme 
increases annual earnings of youth in Kisumu, Kenya. Due to budget constraints, the study can 
only afford 1,000 participants. Fifty per cent are assigned to the treatment and the rest will be 
assigned to the control group. The research team is planning to do the same experiment 
described above, but this time they have auxiliary data, in the form of data from a similar study 
in Kenya. In the previous study, the endline annual earnings regressed on baseline value of 
education gave an R2 equal to 0.5 – that is, baseline education accounts for half of the variance 
in the outcome. Using a two-sided hypothesis test at 0.05 significance level, the research team 
will calculate the MDE for a study aiming at 80 per cent statistical power. 
 
In this example, t1 = 1.96, t2 = 0.84, σy = 2,400 Kenyan shillings, p = 0.5, n = 1,000 and R2 = 0.5, 
which yields MDE = 301 Kenyan shillings. 
  

 
3 In this manual, the proportion of outcome variance by the level 1 covariate(s) baseline is the squared 
correlation coefficient between the baseline measure of covariate(s) and the post-implementation 
measure of the outcome, which is also known as the coefficient of determination. 
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7.1.3 Single-level trials with binary outcomes 
 
The following formulae are used when the outcome variable is a binary variable. 
 
MDE: 

𝛿𝛿 = (t1+t2)�
P(1 − P)

T(1 − T)n
 

 
Sample size: 

𝑛𝑛 = �
𝑃𝑃
𝑇𝑇𝛿𝛿2

−𝑃𝑃 + 1
−𝑇𝑇 + 1

(−𝑡𝑡1 − 𝑡𝑡2)2� 

 
Table 4: Parameters required for single-level trials with binary outcomes 

𝛿𝛿 Minimum detectable effect 

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑡𝑡1 t-value corresponding to the desired significance level of the test* 
𝑡𝑡2 t-value corresponding to the desired power of the design* 
𝑃𝑃 Proportion of the study population that have a value of 1 for the outcome 

in the absence of the programme 
𝑇𝑇 Proportion of individuals randomly assigned to the treatment group 

𝑛𝑛 Sample size  
Note: * t-values are a function of specific sample size. Taking into account central limit theorem and the 
law of large numbers, a minimum sample size assumption needs to be made to calculate t-values 
precisely. Otherwise, users may purposively decide the value for t1 and t2. 
 
Example 
In order to assess whether compensating for transportation costs and loss in wages increases 
the uptake of male circumcision in Zambia, a research team is planning to conduct a 
randomised controlled trial in Makululu District. The study plans to provide food and 
transportation vouchers as an incentive to the uncircumcised male population aged 15–49 
years. The research team can only afford a sample size of 1,000 individuals in total. Fifty per 
cent will be randomly assigned to the treatment group and the other 50 per cent to the control 
group. Following a pilot phase, the team found that 3 per cent of individuals in the target 
population were already circumcised before the intervention. Using a one-side hypothesis test at 
the 0.05 significance level, the research team will calculate the MDE for a study with 80 per cent 
statistical power. 
 
In this example, t1 = 1.65, t2 = 0.84, P = 0.03, T = 0.5, n = 1,000, which yields MDE = 0.027. 
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7.1.4 Single-level trials (binary outcomes) with covariates 
 

The following formulae are used when the outcome variable is a binary variable and baseline 
covariates are used to increase the statistical power of the study. 
MDE: 

𝛿𝛿 = (t1+t2)��
P(1 − P)

T(1 − T)n
(1 − R2)� 

 
Sample size: 

𝑛𝑛 = �
𝑃𝑃
𝑇𝑇𝛿𝛿2

−𝑃𝑃 + 1
−𝑇𝑇 + 1

(−𝑡𝑡1 − 𝑡𝑡2)2(−𝑅𝑅2 + 1)� 

 
Table 5: Parameters required for single-level trials (binary outcomes) with covariates 

𝛿𝛿 Minimum detectable effect 

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑡𝑡1 t-value corresponding to the desired significance level of the test* 
𝑡𝑡2 t-value corresponding to the desired power of the design* 
𝑃𝑃 Proportion of the study population that have a value of 1 for the outcome 

in the absence of the programme 
𝑇𝑇 Proportion of individuals randomly assigned to the treatment group 

𝑛𝑛 Sample size  
𝑅𝑅2 Proportion of outcome variance explained by level 1 covariate(s)  

Note: * t-values are a function of specific sample size. Taking into account central limit theorem and the 
law of large numbers, a minimum sample size assumption needs to be made to calculate precise t-
values. Otherwise, users may purposively decide the value for t1 and t2. 
 
Example 
In order to assess whether compensating for transportation costs and loss in wages increases 
the uptake of male circumcision in Zambia, a research team is planning to conduct a 
randomised controlled trial in Makululu District. The study plans to provide food and 
transportation vouchers as an incentive to the uncircumcised male population aged 15–49 
years. The research team can only afford a sample size of 1,000 individuals in total. Fifty per 
cent will be randomly assigned to the treatment group and the other 50 per cent to the control 
group. Following a pilot phase, the team found that 3 per cent of individuals in the target 
population were already circumcised before the intervention. Using data from a similar study in 
Kenya, the research team noted that a regression of the endline uptake on the ethnic Kikuyu 
gives an R2 equal to 0.6. Using a one-sided hypothesis test at the 0.05 significance level, the 
research team will calculate the MDE with 80 per cent statistical power. 
 
In this example, t1 = 1.65, t2 = 0.84, P = 0.03, T = 0.5, n = 991, R = 0.6, which yields MDE = 
0.017. 
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7.1.5 Single-level trials (rates) 
 
The following formulae are used for cases using incidence rates with a person-years 
denominator, such as the mortality rate or the incidence rate of severe disease. 
MDE: 

µ =  �
−1
𝑅𝑅
�−

1
2
𝑎𝑎 − 𝑅𝑅µ0 +

1
2
�8𝑅𝑅𝑎𝑎µ0 + 𝑎𝑎2�� 

 
Person-year per group: 

𝑅𝑅 =
(z1+z2)2 (µ0+µ1)

(µ0−µ1)2  

 
Table 6: Parameters required for single-level trials (rates) 

𝑅𝑅 Person-year in each group  

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑧𝑧1 z-value corresponding to the desired significance level of the test 
𝑧𝑧2 z-value corresponding to the desired power of the design  
µ1 True (population) rate in the presence of the intervention 
µ0 True (population) rate in the absence of the intervention 

 
Example 
A research team from Cheikh Anta Diop University has developed a new and promising vaccine 
against malaria. In order to test whether this vaccine reduces child mortality, the research team 
is planning to conduct a randomised controlled trial in Touba village in Senegal. Specifically, 
50 per cent of the study sample will be randomly assigned to the treatment group (vaccine) and 
the rest will be assigned to the control group (no vaccine). The trial is expected to last two 
years. Mortality data for two years prior to the study indicates that there were a total of 1,667 
deaths over 23,141 person-years of observation, giving an overall mortality rate of µ0 = 
1,667/23,141 = 0.07203 (72 per 1,000 per year). The research team assumes that the mortality 
rate in the control group remains constant and the vaccine will reduce mortality by 40 per cent. 
Using a two-sided hypothesis test at the 0.01 significance level, the research team will calculate 
person-years of observation in each group for a study with 90 per cent statistical power. 
 
In this example, z1 = 2.58, z2 = 1.28, µ0 = 0.072, µ1 = 0.0432, which yields 2,067 person-years in 
each group. 
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7.2 Cluster-level randomisation 
 
7.2.1 Two-level cluster randomised controlled trials with individual-level outcomes 

(continuous outcome) 
 

MDE: 

𝛿𝛿 =
𝑡𝑡1 + 𝑡𝑡2

�𝑃𝑃(1 − 𝑃𝑃)𝐽𝐽
𝜎𝜎𝑦𝑦�𝜌𝜌 +

1 − 𝜌𝜌
𝑛𝑛

 

 

Number of clusters: 

𝐽𝐽 = �
1
𝑃𝑃𝛿𝛿2

𝜎𝜎𝑦𝑦2
(𝑡𝑡1 + 𝑡𝑡2)2

−𝜌𝜌 + 1
�𝜌𝜌 +

1
𝑛𝑛

(−𝜌𝜌 + 1)�� 

 

Table 7: Parameters required for two-level cluster randomised controlled trials with 
individual-level outcomes (continuous outcome) 

𝛿𝛿 Minimum detectable effect 

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑡𝑡1 t-value corresponding to the desired significance level of the test* 
𝑡𝑡2 t-value corresponding to the desired power of the design* 
𝜎𝜎𝑦𝑦 Standard deviation of outcome variable 
𝐽𝐽 Number of clusters 

𝜌𝜌 Intra-cluster correlation coefficient 

𝑃𝑃 Proportion of individuals assigned to the treatment group 

𝑛𝑛 Number of individuals per cluster 
Note: * t-values are a function of specific sample size. Taking into account central limit theorem and the 
law of large numbers, a minimum sample size assumption needs to be made to calculate precise t-
values. Otherwise, users may purposively decide the value for t1 and t2. 
 
Example 
The South African Ministry of Water and Environmental Affairs is seeking effective measures to 
reduce deforestation and land degradation. The Ministry plans to introduce farmer field schools 
(FFS) for land conservation. Before scaling up FFS at the national level, the Ministry has 
decided to work with a research team from the University of the Witwatersrand to evaluate 
whether FFS reduces land degradation. Farmers will be taught how to reduce deforestation and 
land degradation. In order to avoid spillovers or contamination from neighbouring farmers who 
might change their behaviour relating to deforestation and land degradation after observing and 
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talking to farmers who received the intervention, the research team decides to use a cluster 
randomised design to assess the impact of FFS on land degradation. 
 
Half of 240 villages that participate in this study will be assigned to the treatment group and the 
other half will be assigned to the control group. In each village, 20 farmers will be sampled. In 
the treatment group, the 20 farmers sampled will participate in FFS. A formative research work 
conducted by the research team in 10 villages close to the selected area of study shows that the 
ICC of land degradation is 0.037. The mean and standard deviation of degraded land are 
1.26 hectares and 0.47 hectares respectively. Using a two-sided hypothesis test at the 0.01 
significance level, we will calculate the MDE for a study with 90 per cent statistical power. 
 
On the basis of this example, t1 = 2.58, t2 = 1.28, P = 0.5, J = 240, σy = 0.47, ρ = 0.037and n = 
20, which yields MDE = 0.0683 hectares. 
 

7.2.2 Two-level cluster randomised controlled trials with individual-level outcomes 
(continuous outcome) with covariates 

 
MDE: 

𝛿𝛿 =
𝑡𝑡1 + 𝑡𝑡2

�𝑃𝑃(1 − 𝑃𝑃)𝐽𝐽
𝜎𝜎𝑦𝑦��𝜌𝜌 +

1 − 𝜌𝜌
𝑛𝑛

� (1 − 𝑅𝑅2) 

 
Number of clusters: 
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Table 8: Parameters required for two-level cluster randomised controlled trials with 
individual-level outcomes (continuous outcome) with covariates 

𝛿𝛿 Minimum detectable effect 

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑡𝑡1 t-value corresponding to the desired significance level of the test 
𝑡𝑡2 t-value corresponding to the desired power of the design 
𝜎𝜎𝑦𝑦 Standard deviation of the outcome variable 
𝐽𝐽 Number of clusters 

𝜌𝜌 Intra-cluster correlation coefficient 

𝑃𝑃 Proportion of individuals assigned to the treatment group 

𝑛𝑛 Number of individuals per cluster 
𝑅𝑅2 Proportion of outcome variance explained by level 1 covariate(s)  

Note: * t-values are a function of specific sample size. Taking into account central limit theorem and the 
law of large numbers, a minimum sample size assumption needs to be made to calculate precise t-
values. Otherwise, users may purposively decide the value for t1 and t2. 
 
Example 
The South African Ministry of Water and Environmental Affairs is seeking effective measures to 
reduce deforestation and land degradation in South Africa. The Ministry plans to introduce FFS 
for land conservation, but before scaling up FFS at the national level, the Ministry has decided 
to work with a research team from the University of the Witwatersrand to evaluate whether FFS 
reduces land degradation. Farmers will be taught how to reduce deforestation and land 
degradation. In order to avoid spillovers or contamination from neighbouring farmers who might 
change their behaviour relating to deforestation and land degradation after observing and 
talking to farmers who received the intervention, the research team decides to use a cluster 
randomised design to assess the impact of FFS on land degradation. 
 
Half of 240 villages that participate in this study will be assigned to the treatment group i group 
and the other half will be assigned to the control group. In each village, 20 farmers will be 
sampled. In the treatment group, the 20 farmers sampled will participate in FFS. A formative 
research work conducted by the research team in 10 villages close to the selected area of study 
shows that the ICC of land degradation is 0.037. The mean and standard deviation of degraded 
land is 1.26 hectares and 0.47 hectares respectively. In addition, this formative research reveals 
that degraded land regressed on income gives an R2 equal to 0.4. Using a two-sided hypothesis 
test at the 0.01 significance level, we will calculate the MDE for a study with 90 per cent 
statistical power. 
 

On the basis of this example, t1 = 2.58, t2 = 1.28, P = 0.5, J = 240, σy = 0.47, ρ = 0.037, R2 = 0.4 
and n = 20, which yields MDE = 0.053 hectares. 
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7.2.3 Two-level cluster randomised controlled trials with individual-level outcomes 
(binary outcome)4 

 

MDE: 

µ1 =

⎩
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⎧ 1
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(𝑧𝑧1 + 𝑧𝑧2)2 �µ0(1−µ0)

n
+ µ1(1−µ1)

n
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Table 9: Parameters required for two-level cluster randomised controlled trials with 
individual-level outcomes (binary outcome) 

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑧𝑧1 z-value corresponding to the desired significance level of the test 
𝑧𝑧2 z-value corresponding to the desired power of the design  
µ1 True (population) proportion in the presence of the intervention 
µ0 True (population) proportion in the absence of the intervention 
𝑛𝑛 Number of individuals in each cluster 

𝐽𝐽 Number of clusters in each group  

𝑘𝑘 The coefficient of variation of true proportions between clusters within each 
group5  

 
Example 
In North Cameroon, one of the leading causes of morbidity among children under 5 years is 
vitamin A deficiency. In order to address this problem, a not-for-profit organisation works to 
educate mothers on the importance of vitamin A. Specifically, organisation staff visit houses 
where there are children under 5 years old, and if a vitamin A supplement is not being 
administered to a child, the mother or caregiver is advised to visit the closest health facility to 
receive a supplement. In order to evaluate whether this approach reduces morbidity, the 
organisation is working with a research team from the University of Maroua. The research team 

 
4 Formulae under section 1 and 2 apply for unmatched studies, for pair-matched studies, formulae can be 
used with two modifications. Firstly, the addition of 2 rather than 1 to the required numbers of clusters. 
Secondly, k is replaced by Km, the coefficient of variation in true proportions (rates) between clusters 
within the matched pairs in the absence of intervention (Hayes and Bennett, 1999). 
5 For binary outcomes, the relationship between the ICC and K can be found in Pagel et al. (2011). 
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will evaluate the impact of this intervention (door-to-door visits for promoting vitamin A 
supplements) on coverage of vitamin A supplements (proportion of children under 5 years with 
vitamin A supplementation). To avoid contamination, the research team decides to conduct a 
cluster randomised controlled trial where a cluster is defined as a health facility catchment area 
constituted of a few villages. Half of the health facilities will be assigned to the intervention 
group and the other half will be assigned to the control group. In each village, 50 children will be 
sampled in the catchment area served by the health facility. A survey conducted by the 
organisation a few years previously indicates that the proportion of children already receiving a 
vitamin A supplement is 0.25 and that k is equal to 0.25. The aim of the organisation is to 
increase this coverage to 0.65. Using a two-sided hypothesis test at the 0.01 significance level, 
the research team will calculate the number of health facilities required in each group for a study 
with 80 per cent statistical power. 
 
On the basis of this example, z1 = 2.58, z2 = 0.84, µ0 = 0.25, µ1 = 0.65, k = 0.25 and n = 50, 
which yields four health facilities (clusters) in each group. 
 

7.2.4 Two-level cluster randomised controlled trials with individual-level outcomes 
(rates) 

 
MDE: 
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1
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Table 10: Parameters required for two-level cluster randomised controlled trials with individual-
level outcomes (rates) 

𝛼𝛼 Desired significance level 

𝛽𝛽 Desired power of the design  
𝑧𝑧1 z-value corresponding to the desired significance level of the test 
𝑧𝑧2 z-value corresponding to the desired power of the design  
µ1 True (population) rate in the presence of the intervention 
µ0 True (population) rate in the absence of the intervention 
𝑛𝑛 Number of individuals in each cluster 

𝐽𝐽 Number of clusters in each group  

𝑘𝑘 The coefficient of variation of true proportions between clusters within 
each group  
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Example 
In North Cameroon, one of the leading causes of morbidity among children under 5 years is 
vitamin A deficiency. In order to address this problem, a not-for-profit organisation works to 
educate mothers on the importance of vitamin A. Specifically, organisation staff visit houses 
where there are children under 5 years old, and if a vitamin A supplement is not being 
administered to a child, the mother or caregiver is advised to visit the closest health facility to 
receive a supplement. In order to evaluate whether this approach reduces morbidity, the 
organisation is working with a research team from the University of Maroua. The research team 
will evaluate the impact of this intervention (door-to-door visits for promoting vitamin A 
supplements) on the morbidity of children under 5 years over a 3-year period. To avoid 
contamination, the research team decides to conduct a cluster randomized controlled trial where 
a cluster is defined as a health facility catchment area constituted of a few villages. Half of the 
health facilities will be assigned to the intervention group and the other half will be assigned to 
the control group. In each village, 50 children will be sampled in the catchment area served by 
the health facility. Mortality data for 3 years prior to the study indicates that there were a total of 
1,872 deaths over 12,561 person-years of observation in 31 health facilities in the extreme north 
region with data. The research team assumes that the mortality rate in the control group 
remains constant and the intervention will reduce mortality by 50 per cent. The estimated value 
of k is equal to 0.25. Using a two-sided hypothesis test at the 0.01 significance level, the 
research team will calculate the number of health facilities required in each treatment group for 
a study with 80 per cent statistical power. 
 
On the basis of this example, z1 = 2.57, z2 = 0.84, µ0 = 0.05, µ1 = 0.025, k = 0.25 and n = 50, 
which yields 33 health facilities (clusters) in each group. 
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