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Abstract 

This paper evaluates a Payments for Ecosystem Services (PES) program in western Uganda 
that offered forest-owning households cash payments if they conserved their forest. The 
program was implemented as a randomized trial in 121 villages, 60 of which received the 
program for two years. The PES program reduced deforestation and forest degradation: Tree 
cover, measured using high-resolution satellite imagery, declined by 2% to 5% in treatment 
villages compared to 7% to 10% in control villages during the study period. We find no evidence 
of shifting of tree-cutting to nearby land. We then use the estimated effect size and the “social 
cost of carbon” to value the delayed CO2 emissions, and compare this benefit to the program's 
cost. 
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1. Introduction  
 
Deforestation is responsible for 12% to 15% of anthropogenic carbon emissions, making it the 
second largest source of carbon emissions after fossil fuel combustion (Canadell et al., 2007; Van 
der Werf et al., 2009). Trees absorb carbon dioxide through photosynthesis, and store the carbon 
in their biomass. When a tree is cut down, it stops absorbing carbon dioxide, and, as it 
decomposes or is burned, its store of carbon is released into the atmosphere. 
 
Reducing carbon emissions is, of course, crucial for mitigating climate change. Curbing 
deforestation is believed to be one of the most cost-effective ways to do so (Stern, 2006; Nabuurs 
et al., 2007). The reason is simple: Most deforestation today occurs in developing countries, and 
the opportunity cost of averted deforestation in such settings — for example, forgone subsistence 
farming on the cleared land — is often much lower than the cost of behavioral or technological 
changes to reduce carbon emissions in high-income countries.  
 
Addressing deforestation in developing countries is, thus, a key pillar of international climate 
policy. REDD+ (Reducing Emissions from Deforestation and Forest Degradation) is a United 
Nations mechanism through which developing countries are rewarded financially for preservation 
of forestland; annually, about $500 million dollars flow to developing countries (Silva-Chavez, 
Schaap, and Breitfeller, 2015).1 The Paris Agreement negotiated in 2015 bolstered the role of 
REDD+ in climate policy (United Nations FCCC, 2015).2 
 
To put REDD+ into action, one needs to identify effective on-the-ground interventions that reduce 
deforestation. This paper provides the first rigorous evaluation of a promising and popular type of 
intervention, namely financial incentives for forest-owning individuals or communities to keep their 
forest intact. This type of policy is called Payments for Ecosystem Services (PES); payments are 
made conditional on voluntary pro-environment behaviors (Ferraro and Kiss, 2002; Wunder, 
2007; Engel, Pagiola, and Wunder, 2008). PES is the environmental version of a well-known 
policy instrument in developing countries, conditional cash transfers (CCTs), which are more 
commonly used to promote child health and education. 
 
Despite the widespread use and growing popularity of PES, its effectiveness and cost-
effectiveness are open questions. Individuals might be unresponsive to the incentives, leading to 
small impacts. In addition, even if some people respond to the incentives, cost-effectiveness could 
be low if, absent the payments, many participants would have engaged in the incentivized 
behavior anyway. In the case of PES, this problem of inframarginality is often called “additionality”: 
How much additional forest cover does a PES program actually cause? Another concern is that 
individuals will simply shift their tree-cutting from land covered by the PES contract to other nearby 
land. 
 
This paper is a randomized evaluation of a PES intervention that was piloted precisely to measure 
the causal impacts on forest cover. The PES program offered private owners of forestland in 
western Uganda payments if they refrained from clearing trees. The program was designed and 
implemented by a local non-governmental organization (NGO). The study was carried out in 121 
                                                            
1 A commonly used definition of forest is an area at least 0.5 to 1 hectares in size with tree crown cover exceeding 10% to 30% of the 
area (United Nations FCCC, 2002). Deforestation is a reduction in the amount of land that meets the definition of forest, while forest 
degradation is selective tree-clearing that does not reduce the amount of land that meets the definition of forest. In this paper, we use 
the term deforestation to encompass deforestation and forest degradation. 
2 Article 5 states that “Parties are encouraged to take action to implement and support, including through results-based payments... 
policy approaches and positive incentives for activities relating to reducing emissions from deforestation and forest degradation...in 
developing countries.” 
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villages with private forest owners (PFOs); 60 of the villages were randomly selected to be in the 
treatment group. In treatment villages, the PES program was marketed to PFOs and they were 
eligible to enroll. Over the two-year pilot program from 2011 to 2013, for each hectare of forest 
they owned, enrollees received 70,000 Ugandan shillings (UGX), or $28 in 2012 US dollars, per 
year if they complied with the contract.3 The implementing NGO employed forest monitors who 
conducted spot checks of enrollees' land to check for recent tree-clearing. The program also 
offered additional payments in exchange for planting tree seedlings. 
 
We measure the impact of the program on forest cover by analyzing satellite imagery. Specifically, 
we tasked a very high resolution commercial satellite, QuickBird, to take images of the study 
region at baseline and endline and classified each pixel as tree-covered or not using object-based 
image analysis, a remote-sensing technique for cases where pixels are smaller than the objects 
of interest. The QuickBird pixel size is 2.4 by 2.4 meters, smaller than the crown of a typical 
mature tree. By comparing PFOs' land in treatment and control villages, we can assess how many 
additional hectares of tree cover the program generated. 
 
We find that the PES program significantly reduced deforestation.4 Tree cover declined by about 
7% to 10% between baseline and endline on PFOs' land in control villages, but only by 2% to 5% 
in treatment villages. The effect size corresponds to 0.27 additional hectares of tree cover per 
eligible program participant. These results are robust across different specifications. We also 
estimate village-wide effects, and find that PFOs did not simply shift their tree-clearing to other 
land in the village. We also show that there is no evidence of leakage of deforestation to 
government forest reserves and no evidence of the program affecting deforestation in control 
villages. 
 
The above estimates are intent-to-treat effects, i.e., treatment effects per eligible PFO. Program 
take-up was 32%; the compliance among enrollees, as assessed by the implementing NGO, was 
80%. Surprisingly, the intent-to-treat proportional reduction in deforestation is larger than the take-
up rate, suggesting that enrollees had higher-than-average counterfactual deforestation. Thus, 
we do not find evidence that PFOs who were anyway planning to keep their forest intact enrolled 
in the PES program at an especially high rate. 
 
What is also surprising is that the take-up rate was only 32% given there was no penalty for 
signing up and not complying. Most of the low take-up seems to be explained by insufficient 
marketing of the program. In our endline survey, many PFOs reported that they were unaware of 
the program or did not know how to sign up. In addition, some PFOs were wary of signing the 
PES contract, fearful that it was a ploy to steal their land. Only a small minority said they were 
uninterested in complying so did not take up, which is consistent with relatively little selection into 
the program based on low counterfactual deforestation. 
 
After presenting the program impacts on tree cover, we provide a rough assessment of cost-
effectiveness in terms of averted carbon dioxide (CO2) emissions. We estimate that for each $0.25 
in payments, or $0.57 in total program costs, a ton of CO2 emissions due to deforestation was 
delayed. We then calculate the externality benefit of the delayed emissions, using a “social cost 
of carbon” (SCC) of $39 (in 2012 US dollars) per ton (Interagency Working Group on Social Cost 
of Carbon, 2013). The SCC is the benefit of permanently averting CO2 emissions, while this 2-

                                                            
3 The average exchange rate during the study period was approximately 2500 UGX = 1 US dollar. 
4 Seedlings planted as part of the program still had small tree crowns at endline, so avoided deforestation rather than reforestation 
accounts for the vast majority of the gain in forest cover that we estimate. 
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year program's benefit was to delay deforestation and emissions. To quantify the delay, we need 
to make assumptions about deforestation after the program ends, which we do not observe in our 
data. Our base case scenario assumes PFOs deforest at a 50% higher rate than usual after the 
program ends, converging to the control group after four years. The social benefit of the delayed 
CO2 emissions is then $1.11 per ton, or roughly 2 times the $0.57 program cost.5 
 
We repeat the calculation for a range of assumptions. At one extreme, if PFOs catch up on their 
backlog of avoided deforestation the moment the program ends, the benefit-cost ratio falls to 0.7. 
At the other extreme, if PFOs pause their deforestation during the intervention and then resume 
deforesting at their typical rate, not an accelerated rate, after the program ends, then the benefit 
cost-ratio rises to 12.3. This last scenario, which represents a permanent delay in deforestation, 
is the most relevant one for extrapolating to a permanent or longer-duration program.6 
 
Note that the calculations above quantify the gross reduction in CO2 from delayed deforestation 
in our sample, but the net reduction in global CO2 emissions from the program depends on 
behavioral responses that are beyond the scope of what our study can measure (e.g., How much 
less charcoal did urban consumers use? Which fuel types did they shift to?). Moreover, the 
general equilibrium effects of such a program depend on how widely it is scaled up. Nonetheless, 
our finding that PES appears to be an effective way to reduce CO2 emissions stands in sharp 
contrast to assessments of most approaches; few other policies come close to breaking even. 
For example, policies in the United States such as hybrid and electric vehicle subsidies or ethanol 
subsidies have costs per ton of averted CO2 that far exceed the SCC (Knittel, 2012; Gayer and 
Parker, 2013). 
 
We complement the remote sensing analysis by measuring program impacts via a household 
survey. There are several noteworthy findings from the survey data. First, consistent with the 
remote sensing results, self-reported tree-clearing was much lower in treatment villages. Second, 
treated PFOs took steps to protect their land from encroachers, decreasing others' access to it 
and patrolling it more vigilantly. Third, the program did not seem to have appreciable effects on 
participants' consumption or other measures of current economic well-being, which is not too 
surprising. The large impacts on forest cover imply that PFOs did reduce deforestation and hence 
forwent income; the PES payments offset this income loss but did not, on net, enrich them. At the 
same time, because participation was voluntary, the program is unlikely to have impoverished 
them, although a participant might choose lower temporary income in exchange for building up 
assets, i.e., owning more intact forest. Note that unlike many CCTs, this program, by focusing on 
landowners, did not target the very poorest in these communities, and the payment amount in fact 
scaled up with the size of the landholding. Thus, the program may have widened within-village 
wealth inequality. The net welfare benefits of the program depend on not just the CO2 impacts, 
but also these possible unintended negative effects as well as other positive impacts such as 
increased biodiversity and income redistribution from international donors to a developing country. 
 
Climate change is one of, if not the most, significant environmental challenge we face, yet we lack 
evidence on what policies can mitigate it cost-effectively. The main contribution of this paper is to 
provide evidence on this important question. We assess a widely-used approach to reduce carbon 
emissions, providing some of the most rigorous evidence to date evaluating any type of policy 
                                                            
5 We assume a uniform rate of deforestation absent the program. Carbon from cleared trees is not emitted instantaneously; we assume 
the average time from tree-clearing until CO2 emissions is 10 years. The SCC is projected to rise over time at 1.9% per year 
(Greenstone, Kopits, and Wolverton, 2011; Interagency Working Group on Social Cost of Carbon, 2013). It rises because of growth 
in income per capita and population, and because the marginal damage from a ton of emissions is higher when climate change has 
progressed further, e.g., when global temperatures are higher (Nordhaus, 2014). We use a 3% discount rate. 
6 See Section 6 for discussion of the additional assumptions needed to value a permanent delay in deforestation, as well to extrapolate 
to a permanent program. 
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aimed at reducing carbon emissions. Scholars have noted the need for high-quality evaluations 
of environmental policies in general and, given its growing popularity among policy makers, PES 
in particular (Greenstone and Gayer, 2009; Ferraro and Patanayak, 2006; Ferraro et al., 2015; 
Samii et al., 2014).  
 
The most widely studied PES project is Costa Rica's Pago por Servicios Ambientaless (PSA). 
Pattanayak, Wunder, and Ferraro (2010) review the literature on PSA and conclude that “studies 
give widely divergent results,” and many have serious methodological limitations. Many case 
studies report large, positive impacts on forest cover, but likely suffer from omitted variable bias. 
The most convincing studies use covariate or propensity-score matching methods, but even here, 
the estimated impacts on forest cover range from very small to moderately large (Arriagada et al., 
2012; Robalino and Pfaff , 2013). PES programs in China, Mozambique, and Mexico, among 
other settings, have also been studied (Uchida et al., 2007; Hegde and Bull, 2011; Alix-Garcia, 
Shapiro, and Sims, 2012).7 
 
The paper is also related to recent randomized evaluations of tree-planting programs (Jack, 2013; 
Jack et al., 2015) and other studies on forest conservation in developing countries (Foster and 
Rosenzweig, 2003; Edmonds, 2002; Somanathan, Prabhakar, and Mehta, 2009; Burgess et al., 
2012; Alix-Garcia et al., 2013; Assunção et al., 2014). More broadly, we contribute to the literature 
in economics on environmental issues in developing countries (Greenstone and Jack, 2015). 
Finally, this paper has links to the literature evaluating CCTs, differing from most previous studies 
through its focus on environmental protection (Fiszbein, Schady, and Ferreira, 2009). 
 
The rest of the paper is organized as follows. Section 2 describes the study sample, 
randomization, and PES program. Section 3 then describes the data sources, and section 4 
provides descriptive statistics on the sample and lays out the empirical strategy. Section 5 
presents the results on the impacts of the PES program on deforestation and other outcomes, 
and section 6 translates the impacts into averted carbon emissions and assesses program cost-
effectiveness based on the social cost of carbon. Section 7 presents concluding remarks. 
 

2. Study design and description of PES program  
 

2.1 Study setting  
 
The study was conducted in 121 villages in two districts in western Uganda, Hoima and Kibaale. 
Forests cover an eighth of Uganda's land area, concentrated in the western region. Uganda's 
deforestation rate between 2005 and 2010 was 2.7% a year, the third highest in the world (FAO, 
2010). The pace of deforestation is even faster on privately-owned land, which represents about 
70% of the forest in Uganda (NEMA, 2008). As in much of Africa, the main drivers of deforestation 
in the study region are subsistence agriculture and domestic demand for timber and charcoal 
(Fisher, 2010). 
 
In addition to reducing atmospheric CO2, forests also increase biodiversity. Many species are 
threatened by deforestation in western Uganda, notably chimpanzees, an endangered species 
that is important for Uganda's tourism industry. Other benefits of forest conservation include 
watershed protection and reduced siltation and flooding (Nabuurs et al., 2007). 
 

2.2 Sample of villages and forest owners  

                                                            
7 Other research on PES includes: (Pagiola, et al., 2005; Pagiola, et al., 2007; Milder, Scherr and Bracer, 2010., Porras et al., 2013; 
Samii et al., 2014; Alix-Garcia, Sims and Yañez-Pagans, 2015) 
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To determine the study sample, we first conducted a census of all private forest owners (PFOs) 
in all villages with forest in Hoima (late 2010) and northern Kibaale (early 2011). Villages with 
forest were identified using Landsat satellite imagery overlain with administrative boundaries. Our 
field team visited these villages, met with the LC1 chairperson (elected village head), explained 
the study, and asked him to assemble 3 to 4 knowledgeable PFOs. This group then drew a rough 
map of the village and listed all the people who owned forest in the village. While most PFOs do 
not have a formal land title, which family de facto owns each plot of land is generally agreed upon 
within the village; the most common form of land dispute is among family members. The field 
team then followed up with at least 3 spot checks per village. Through this process, we identified 
189 villages in Hoima and 91 villages in Kibaale with at least 1 PFO. 
 
We narrowed this set of 280 villages to our sample of 121 villages by first excluding villages with 
fewer than 6 or more than 25 PFOs.8 We then excluded parishes (the administrative unit above a 
village) with only 1 eligible village because we had not yet determined whether a lottery to choose 
treatment villages would be conducted in each parish or each subcounty (administrative unit 
above a parish). We excluded two parishes in Kibaale district with very little intact forest; these 
were the only parishes with forest in their subcounties, so excluding them reduced the geographic 
spread of the study. Finally, one subcounty (19 villages) was set aside for a pilot.9 
 
We then conducted a baseline survey of PFOs in the sample villages in April to May 2011. In 
these villages, 1449 PFOs had been listed in the census, and we completed baseline surveys of 
1174 (81%) of them. The main reasons for non-response were that we could not locate the PFO, 
or he stated that he was not a PFO. Some PFOs also refused to participate. An additional criterion 
to be in our final sample is that we collected valid GPS coordinates for the PFO's home at 
baseline. GPS coordinates allow us to identify the PFO's home in the satellite imagery and, thus, 
are necessary for having valid remote sensing data. The main reasons for missing GPS data were 
malfunctioning of the GPS units or enumerator error. The sample for our analysis comprises the 
1099 PFOs who completed the baseline survey and for whom we have GPS coordinates. 
 

2.3 Randomization  
 
After the baseline survey, 60 of the villages were randomly selected to be in the treatment group. 
The randomization was conducted via public lotteries held in each of the 7 subcounties in our 
sample. In advance of each lottery, we divided the sample villages in the subcounty into two sets, 
balanced on covariates.10 The LC3 chairperson (elected head of the subcounty) or a stand-in 
drew one of the two lists out of a bin. This selected list constituted the treated villages. The lotteries 
occurred between August and December 2011. Of the 1099 PFOs in the sample, 564 reside in 

                                                            
8 We excluded villages with more than 25 PFOs because the project had a fixed budget for payments, and, with the village as the unit 
of randomization, additional PFOs per village add only limited statistical power. We excluded villages with fewer than 6 PFOs due to 
the fixed cost of working in a village and desire to have statistical power to measure village-level effects. 
9 Kyabigambire was chosen as the pilot subcounty because the implementing NGO had close ties to the community and conducted 
its other activities there. At the NGO's request, four villages where they had very close ties were guaranteed the program. In the other 
15 villages, we conducted a pilot of the baseline survey, subcounty lottery, program implementation, and endline survey; five villages 
were chosen for the treatment group. The lottery and program launch occurred in June 2011, two months before the main program 
launch. 
10 We first generated permutations that divided the villages into two sets differing in size by no more than one village. In subcounties 
with few sample villages, we constructed all possible permutations and for subcounties with many villages, for computational reasons, 
we generated a random sample of 1000 permutations. We then tested for balance on four village-level variables: number of PFOs in 
the sample, distance to a road, average per capita income, and average size of landholding. We considered the two sets of villages 
balanced if the standardized difference in the mean of each variable was less than 0.25. For each subcounty, among the balanced 
permutations, we randomly chose one to use in the public lottery. This procedure of prespecifying the set of balanced randomizations 
has advantages over re-randomizing until a threshold level of balance is achieved or choosing the most balanced permutation (Imbens, 
2011). 
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treatment villages, and the remaining 535 are in control villages. 
 

2.4 PES program  
 
The PES program was funded via a grant from the Global Environment Facility, through the United 
Nations Environment Programme, to the Ugandan government's National Environment 
Management Authority (NEMA). NEMA subcontracted the design, implementation, and 
management of the two-year program to a Ugandan conservation non-profit, Chimpanzee 
Sanctuary and Wildlife Conservation Trust (CSWCT). CSWCT's main activity is operating a 
chimpanzee refuge near Entebbe, but a secondary activity is promoting conservation of the 
chimpanzees' natural habitat in western Uganda. Prior to running this PES program, their work in 
western Uganda with PFOs included community education about conservation and promoting 
alternative livelihoods to agriculture such as beekeeping. 
 
After the lotteries occurred, we gave CSWCT the list of treatment villages, and they implemented 
the program. They rolled out the program, subcounty by subcounty, beginning in August 2011 
and reaching the last subcounty in January 2012. Their first step when entering a community was 
to hold a parish-level meeting for eligible PFOs to advertise and explain the program. They then 
worked with interested PFOs to verify their forest land, measure its area, and determine their 
eligibility. They explained and helped PFOs fill out and sign the PES contract form. For those who 
signed up, CSWCT monitored their land via spot checks and made annual payments to those 
who complied with the contract.11 The monitoring occurred through in-person spot checks once 
every one or two months, during which the CSWCT employee checked for fresh tree stumps or 
other signs of cleared forest. 
 
The terms of the PES contract were set by CSWCT, with input from other project partners and 
using PES programs in other countries as a guide. The contract stipulated that the PFO would 
conserve his entire existing forest and could not cut down any medium-sized trees (trees with a 
trunk diameter at breast height (DBH) of 10 to 50 centimeters (cm)). He was allowed to cut 
selected mature trees (>50 cm DBH), determined by the number of mature trees per species in a 
given forest patch. This provision was to give PFOs a small amount of leeway in case of 
emergencies. Participants were allowed to cut small trees (< 10 cm DBH) for home use and to 
gather firewood from fallen trees. 
 
An important consideration in designing the contract was that it be simple enough to explain to 
PFOs and to assess compliance. Hence, the contract is much blunter than what would be 
prescribed for “optimal” forest management. Its goal was to incentivize improved forest 
management relative to the status quo. This tradeoff between nuanced, multi-faceted 
requirements and the feasibility of monitoring compliance is inherent to all PES programs, and 
essentially all incentive contracts. 
 
Enrollees who complied, as determined by CSWCT's monitoring, received a cash payment of 
70,000 UGX ($28) per hectare of forest per year. The average amount of forest area owned is 2 
hectares, yielding a payment of $56 a year for compliance, which is equal to 5% (16%) of average 
(median) annual household income, as reported in the baseline survey.12 

                                                            
11 Some PFOs who signed up for the program are not in our sample, either because we did not identify them as PFOs in our census 
or they did not complete our baseline survey. 
12 Costa Rica's PAS program, launched in 1997, and Mexico's Pagos de Servicios Ambientales Hidrologicos (PSAH) program, 
launched in 2003, are two of the major deforestation PES programs worldwide, and a comparison to them is useful  (Wunder, Engel, 
and Pagiola, 2008). Both make annual cash payments like the CSWCT program. The payment level (in nominal USD) is $65 per 
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To gauge how this payment level compares to the opportunity cost of keeping forest intact, a large 
tree that can be used to make lumber sells for $20 to $40. At baseline, 29% of PFOs reported 
earning revenue from timber products in the past one year, and among these, the mean (median) 
revenue was $151 ($40). The second type of forgone income is from cultivation that would have 
occurred on cleared land. While most households consume all of the crops that they grow, among 
households that sell crops for cash, self-reported income is in the range of $30 to $100 per hectare 
of cultivated land; if a PFO clears new land, he usually clears one or two 40 square meter (0.16 
hectare) plots. 
 
PES enrollees also had the option to dedicate up to 2 hectares of cleared forest to reforestation. 
CSWCT provided the seedlings, and the PFO received 70,000 UGX per hectare per year if the 
seedlings survived. About half of enrollees took up this option. We focus on the averted 
deforestation component of the program because it was more significant in terms of payments, 
take-up, and contributions to tree cover. However, when comparing the amount of money paid to 
the amount of avoided deforestation, we include the payments for reforestation, as this extra 
option and payment might have induced some PFOs to enroll. (PFOs were not allowed to take up 
just the reforestation component; all enrollees were required to avoid deforestation on their forest 
land.) 
 

2.5 Theory of Change 
 
This particular PES scheme is designed to correct a market failure: when a tree is cut down, it 
stops absorbing carbon dioxide, and, as it decomposes or is burned, its store of carbon is released 
into the atmosphere, contributing to global warming, and thus imposing a cost on society. An 
estimate of this “social cost of carbon” (SCC) is $39 (in 2012 US dollars) per ton (Interagency 
Working Group on Social Cost of Carbon, 2013).  Curbing deforestation is believed to be one of 
the most cost-effective ways to mitigate climate change, in part because most deforestation today 
occurs in developing countries, and the opportunity cost of averted deforestation in such settings 
— for example, forgone subsistence farming on the cleared land — is often much lower than the 
cost of behavioral or technological changes to reduce carbon emissions in high-income countries.  
 
At the private forest owner level, the PES payment provides an incentive to reduce deforestation. 
However, a variety of factors may reduce the program impact on deforestation and thus the cost-
effectiveness of the intervention. First, there may be factors on the external margin of the program 
causing some PFOs not to sign up to the program in the first place. For example, as a new 
program being rolled out in a rural area of Uganda, some PFOs might simply not have been aware 
of its existence. Or, they may have heard about the new program but are reluctant to take-up 
because they fear that the program may lead to land-grabbing. Program effectiveness may also 
be limited by factors on the internal margin of the program. For example, there may be PFOs that 
sign up precisely because absent the payments they would have engaged in the incentivized 
behavior anyway, limiting the “additionality” that this PES program brings with regards to reducing 
deforestation. For such forest owners, the PES payment would simply provide an additional 
source of household income, which in turn may benefit household outcomes such as child health 
and education, without reducing deforestation. Another concern is that PFOs sign up but simply 

                                                            
hectare (ha) per year for PAS (1.2% of Costa Rica's 2006 GDP per capita) and $27 to $36 per ha per year (0.4% to 0.6% of Mexico's 
2003 GDP per capita) for PSAH. The $28 per ha per year payment in the CSWCT program is 4.7% of Uganda's 2011 GDP per capita. 
PSA requires a minimum forest area to enroll of 2 ha, and PSAH requires 50 ha; the CSWCT program did not have a minimum size. 
PAS and PSAH offer five-year contracts; the CSWCT contract length was two years. Monitoring for PSA and PSAH is done via annual 
remote sensing and periodic on-the-ground spot checks, while CSWCT used frequent on-the-ground monitoring. Among other 
differences, PSAH deemed forest with tree density less than 80% ineligible, and PSA required fencing the enrolled forest. 
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shift their tree-cutting from land covered by the PES contract to other nearby land. And, the impact 
of the program may have been limited as a result of its relatively short duration (2  year). In short, 
while this Uganda based PES scheme is designed to address the negative externality that arises 
when trees are cut, there may be a variety of factors that render this not cost-effective.   
 
 

3. Data  
 

3.1 Satellite data  
 
Our main outcome is forest cover on the sample households' land. We analyze satellite images 
of the study region taken at baseline and endline to identify forest cover, or more precisely, tree 
cover. We do not use the restricted definition of forest based on a minimum contiguous area 
covered by trees, as we are interested in the total effect on tree cover, inclusive of selective cutting 
of trees within the forest (degradation) and any shifting of tree-clearing from “official” forest to 
other land. 
 

3.1.1 QuickBird satellite images  
 
The data source for measuring tree cover is QuickBird satellite imagery. QuickBird is a 
commercial satellite that captures images with a multispectral resolution of 2.4 by 2.4 meters. We 
tasked the QuickBird satellite to take images of our 2461 square kilometer study region at baseline 
and endline (at a cost of $23 per square kilometer per wave). 
 
QuickBird cannot image an area as large as our study region on one flyover. Thus our baseline 
and endline image each consist of five to six vertical strips taken during north-to-south flyovers 
on different days. It required multiple passes over some strips to obtain an image that, in 
aggregate for the study region, had less than 15% cloud cover, which is the quality standard that 
the vendor guarantees. Most of the baseline images were collected in December 2011 and 
January 2012. Due to an extended rainy season, the last strips of the image were collected in 
November and December 2011, which is a few months after the program was rolled out. This 
timing would likely attenuate our estimated program effects; relative to control villages, treated 
villages should (and do) look more forested at baseline if the program has been in place and has 
been having impacts for a few months, which attenuates the treatment effect size that is 
estimated. In the analysis, we show that the results are robust to restricting the sample to 
observations where the lottery occurred after the baseline image was taken (and indeed these 
results are larger). 
 
We obtained our endline images while the program was still in effect. At scale-up, this type of 
PES program would likely be in place indefinitely or at least for a long duration, but this trial PES 
program lasted for two years. Once the financial payments end, PFOs have no incentive not to 
deforest their land, and thus a zero impact after the program is over does not mean that the 
program did not delay carbon emissions. The estimate of interest for a temporary program is to 
measure the postponement of deforestation it caused. 
 
To avoid delays in the endline images such as occurred at baseline, we tasked the satellite to 
begin taking images in December 2012. The first strip was taken in December 2012, and most of 
the area was imaged between January and March 2013. The program was in place through at 
least August 2013 in all treatment villages. We estimate effects when the program had been in 
place for on average 1.5 years. 
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3.1.2 Remote sensing analysis  
 
The remote sensing analysis was carried out by the Stanford Spatial Analysis Center. The initial 
step was to pre-process the images, for example to combine the image strips that comprise the 
overall baseline or endline image of the study region and to adjust for solar zenith angle and 
Earth-Sun distance at acquisition time. This step and subsequent ones were applied to the image 
area within the study village administrative boundaries, which were obtained from the Ugandan 
Bureau of Statistics. 
 
Then the images were analyzed to classify each pixel as having tree cover or not. This was done 
via object-based image analysis (OBIA), using the eCognition software program (Benz et al., 
2004). In OBIA, the image is first segmented into polygons, or objects, with spectral and spatial 
homogeneity. The researcher chooses several parameters for the segmentation algorithm. A key 
parameter is scale, or how homogeneous each polygon should be; the parameter is called scale 
because requiring polygons to be more homogeneous will result in smaller-sized polygons, all 
else equal. Other parameters govern how much to emphasize homogeneity in color versus shape 
(e.g., compact shapes, smooth borders). The researcher sets the parameters, looks at the results 
generated by the segmentation algorithm, and then readjusts the parameters until there is a good 
match with validation data collected in the field (described in the next subsection). The goal is for 
the polygons to correspond to real-life objects or features of the landscape such as a tree crown 
or a segment of a dirt road. 
 
OBIA is used for analysis of very high resolution images, i.e., <5 meter resolution. More precisely, 
OBIA is designed for when the objects of interest are larger than the pixel size. At very high 
resolution, pixel-by-pixel analysis can lead to classification errors due to the high degree of 
spectral variation within a class (each pixel comprising a tree crown will have a different spectral 
response); OBIA reduces this misclassification. More importantly, OBIA takes advantage of the 
rich information contained in the relationship between adjacent pixels (Blaschke, 2010). For 
example, the shape, size, and context of a cluster of pixels help us identify it as a tree. 
 
After segmentation, the polygon or object is the unit of analysis for classification. In our case, the 
goal is to classify each object as tree, non-tree, or cloud cover. (Pixels for which the landscape is 
obscured by clouds become missing data in our analysis.) The classification step uses a 
knowledge-based expert system in which the researcher defines a mutually exclusive and 
collectively exhaustive set of classes and a rule set for assigning objects to classes. The rules 
use several attributes of the objects such as color, shape, and size. In practice, classification is 
not done after the segmentation is finalized; the entire process is iterative, and the researcher 
visually inspects the classification results to refine the rules and parameters.13  
 
We validated the classification rules and improved them by using ground-based data collected 
from field plots. To define the rules, we applied a classification and regression tree (CART) 
algorithm which determined the best rules for using the object attributes to predict forest 
classification, and “trained” the CART system with some of the ground-based data and validated 
it using the rest of the ground-based data. 
 

3.1.3 Ground-based forest measurements  
 
                                                            
13 Specifically, we used a change detection algorithm in which we first segmented and classified the baseline image, and then 
segmented the combined multidate images, using the initial classification as an object attribute in the multidate processing (Desclee, 
Bogaert, and Defourny, 2006). We classified objects as persistent tree cover, persistent non-tree, tree gain, tree loss, or cloud-covered. 
Pixels with cloud cover at either baseline or endline are treated as missing data. 
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After an initial rough classification of the study area using baseline Landsat satellite images, we 
sampled 440 geographic locations in the study area and conducted ground-based forestry 
measurements in spring and summer 2012. The ground measurements were conducted by a 
Ugandan forestry NGO, Nature Harness Initiatives (NAHI). NAHI followed the standard protocol 
for conducting a forestry inventory of a 20 meter by 25 meter plot. They identified all trees with a 
diameter at breast height (DBH) of 10 centimeters or more, recorded the DBH, and estimated 
crown height and crown diameter. They also counted the number of trees of each species. 
 

3.1.4 Landsat data  
 
To improve statistical precision and adjust for any pre-trends in deforestation, we also use 
Landsat satellite images from the pre-intervention period, specifically from 1990 and 2010. 
Landsat is a US-government run satellite system with an image resolution of 30 meters. Given 
this coarser resolution, we use a pixel-by-pixel technique and calculate the probabilistic fraction 
of each pixel that is photosynthetic vegetation. The classification does not make a distinction 
between trees and other photosynthetic vegetation such as grass. However, the technique we 
employ, the Carnegie Landsat Analysis System, was designed to detect deforestation and forest 
degradation using Landsat images (Asner et al., 2009). 
 

3.1.5 Unit of observation and missing data  
 
The main unit of observation in our regression analysis is the PFO. The remote sensing analysis 
produces a classification of each pixel in the study area, and to convert this to PFO-level data, we 
overlay polygons that represent each PFO's land. While we do not have the actual boundaries of 
their land, we have the geolocation of their home and their self-reported landholding. As a proxy 
for their land, we use a circle, centered on their home that is twice as large as the area of land 
they own. Note that homes are spread apart in the typical village, as opposed to clustered 
together; an individual's land is typically contiguous to their home. 
 
We use a circle larger than the actual land owned so that we are likely to include all or most of 
the land they own and nearby land to which they might shift their tree-cutting. If the land circles 
excluded much of their land, an estimated reduction in deforestation could simply reflect shifting 
of tree-cutting from near their home to the periphery. On average, PFOs own 10.8 hectares of 
land, so the average size of the circles we analyze is 21.6 hectares. We also show the results 
using circles that are 1 and 3 times the size of the landholding, and because PFOs' estimates of 
the area of their land might be inaccurate, we also use circles that are equal-sized for each PFO, 
based on the median land size of 5.3 hectares. Note that 1 PFO has missing data for the amount 
of land owned and 5 PFOs reported owning no land; for these observations, we have data for a 
circle around their home using the sample-median land size but not self-reported size.14 
 
Each circle contains many pixels, and we use the number of pixels classified as tree-covered to 
calculate the total area of tree cover for the PFO. There are two sources of missing data when we 
calculate this aggregate measure for each PFO. The first is that some of the landscape is 
obscured by cloud cover at either baseline or endline. (In the change-detection remote-sensing 
algorithm we use, pixels with cloud cover at either baseline or endline are treated as missing, so 
the rate of missing data is identical at baseline and endline.) For most of the sample, cloud-free 
data are available for a subset of the PFO's land area. For 98 PFOs, or 9% of the sample, the 
entire land circle is covered by clouds when using land circles that are twice the self-reported land 

                                                            
14 These PFOs reported owning forest in the screening questions at the start of the survey, and 3 of them reported owning land at 
endline. 



17 
 

area. These are missing observations. Appendix Table A1 breaks down the sample by availability 
of different outcome data. 
 
Missing data is uncorrelated with treatment status; the location of cloud cover is essentially 
random for our purposes. Note that, mechanically, smaller PFO circles are more likely to have 
completely missing data. Appendix Table A2 shows that attrition due to missing satellite data is 
uncorrelated with treatment status or program take-up, but is correlated with land size (column 
4). Conditional on land size, the observations with missing satellite data are similar to the main 
sample (column 5). 
 
A second more minor reason for missing data is that for some PFOs, part of their land circle falls 
outside the village boundaries and therefore we do not have forest classification for that segment. 
This leads to 4% missing data on average and no cases where the entire observation is missing. 
 
To recap, for the majority of our PFOs, some but not all of their land circle has valid data, i.e., 
cloud-free and within the village boundaries. Conditional on having some data, the average 
proportion of the land with valid data is 79%. Our outcome measure is, therefore, an aggregate 
measure based on a sample rather than the universe of pixels representing the land. For statistical 
efficiency, in the estimation of program impacts, we weight observations by this sampling rate, 
i.e., the proportion of the PFO's land for which we have remote-sensing data; in practice, the 
unweighted estimates are similar. 
 
We also conduct analyses at the village level in which the polygon is the administrative boundary 
of the village. We have less statistical power to estimate program effects when we analyze the 
entire village because only a portion of land in a village is owned by PFOs. However, the village-
level analysis is useful for investigating within-village spillovers. For the village-level data, there 
are no cases of entirely missing data. 
 

3.2 Survey data  
 
Our baseline survey took approximately 1 to 1.5 hours for a respondent to complete and asked 
about characteristics of the forest owner's land, his past tree-cutting behavior, attitudes toward 
the environment, consumption, and other topics. We also recorded the location of the PFO's home 
using hand-held GPS devices. 
 
We conducted a similar survey at endline and use these data to measure program impacts on 
outcomes other than objective forest cover such as self-reported tree cutting, whether the PFO 
restricted others' access to their land, and socioeconomic outcomes such as expenditures and 
child health. We also asked questions about the program such as why treatment PFOs did or did 
not take up the program. 
 
At endline, we successfully re-surveyed 1020 (93%) of the 1099 baseline PFOs. The survey 
completion rate was higher in control (95%) than treatment villages (91%), and in particular, PFOs 
in treatment villages who did not take up the program were less likely to participate, as shown in 
Appendix Table A2. Some of them had moved or died, but most just did not want to participate in 
the survey; anecdotally, PFOs who were wary of outsiders were less likely to participate in both 
the program and the endline survey. Thus, for the survey-based results, we calculate Lee bounds 
on the treatment effects (Lee, 2009). 
 

3.3 Administrative data on program enrollment and payments  
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Our final data source is the administrative records of the implementing partner, CSWCT. For each 
of our baseline PFOs, we know whether he enrolled in the program, how much forest area he 
enrolled, and how much he was paid each of the two years of the program. We also have data on 
how much land PFOs set aside for reforestation, how many trees they planted, how many 
survived, and the payment received for this activity. 
 

4. Descriptive statistics and empirical strategy  
 

4.1 Descriptive statistics  
 
Table 1 summarizes key baseline variables from the PFO survey and satellite data and tests for 
balance between the treatment and control groups. The first two columns report variable means 
and standard deviations for the treatment and control subsamples, and the third column reports 
the normalized difference in means (treatment mean minus control mean, divided by the pooled 
standard deviation). 
 
Regarding balance, none of the 18 variables tested has imbalance at the 10% significance level. 
Also, the magnitudes of the normalized differences are small, well below the conventional 
threshold for imbalance of 0.25 (Imbens and Wooldridge, 2007). PFOs, on average, are 47.5 
years old and have 8 years of education. The next variable listed is the self-reported “log” of the 
land area owned by the PFO. The variable uses the inverse hyperbolic sine transformation, which 
approximates the log function but accommodates zeros. In levels, the mean (median) land area 
for the sample is 10.8 (5.3) hectares. 
 
About 85% of PFOs report having cut trees in the three years preceding the baseline survey. 
There are two broad reasons to cut trees. One is because the tree products are valuable. Large 
trees can be converted into lumber, medium-sized or crooked trees can be burned to make 
charcoal, or small trees can serve as building material for huts. Most of the trees for lumber and 
charcoal are sold to timber and charcoal dealers and feed into a national market, with much of 
the end use in urban areas. The second reason to cut trees is because the cleared land can then 
be used for other purposes, almost always cultivation in this setting. About 24% of our sample 
had deforested to use the land for cultivation, and 71% had done so to use or sell the timber 
products. PFOs often cut down and sell trees for emergency cash to pay for unexpected costs 
such as hospital bills or large, infrequent expenses such as school fees. About a quarter of the 
sample reports having done so. On average, revenue from timber products in the previous year 
is 110,000 UGX or $44. 
 
The baseline survey asked several other questions related to land and conservation. About 18% 
of the sample rented out part of the land they owned. One in ten were currently involved in an 
environmental program, a little more than half agreed that deforestation was a problem in the 
community, and a small number (5 percent) agreed with the statement that it is necessary to 
damage the environment to improve one's life. (Not surprisingly, this small minority has very low 
program take-up.) 
 
The next rows summarize variables based on the satellite imagery. The amount of area classified 
as tree-covered in the PFO's land circle averages 4.1 hectares, which represents about one fifth 
of the land area. The average percent change in photosynthetic vegetation in the pre-intervention 
period from 1990 to 2010 is 3.6%. 
 
While our survey sample comprises only PFOs, anecdotally, PFOs are richer than non-PFOs in 
their village. Consistent with this, among PFOs, we find that the larger the amount of forest owned, 
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the higher baseline per capita income is. Thus, this program, by virtue of targeting landowners, is 
regressive within the community (but progressive on a global scale because funds were being 
transferred from international donors to a developing country). 
 

4.2 Empirical strategy  
 
Using the data described above, we estimate the following equation via ordinary least squares 
regression to quantify the impacts of the PES program: 

 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  =  𝛼𝛼 +  𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝛽𝛽𝛽𝛽 𝑖𝑖 +  𝛾𝛾𝛾𝛾𝛽𝛽𝛾𝛾𝑇𝑇𝛾𝛾𝛾𝛾𝛾𝛾𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  +  𝑋𝑋1𝑖𝑖𝑖𝑖 . 𝛿𝛿 +  𝑋𝑋2𝑖𝑖𝑖𝑖  . 𝜇𝜇 +  𝜀𝜀𝑖𝑖𝑖𝑖              (1) 

 
The outcome is the amount of tree cover at endline on the land owned by PFO 𝛾𝛾 in village 𝑗𝑗 after 
the intervention has been in place for roughly one and a half years. As a proxy for the land owned 
by the PFO, we use a circle of land surrounding his home. The regressor of interest is Treat which 
equals 1 in the treatment villages and 0 in the control villages. The coefficient is the effect of the 
PES program, which is hypothesized to be positive. 
 
We control for baseline tree cover as well as the vector 𝑋𝑋1, which encompasses variables related 
to our stratification procedure, in all specifications. 𝑋𝑋1 comprises subcounty fixed effects, as the 
randomization was stratified by subcounty, and the village-level variables we sought baseline 
balance on in our randomization: number of PFOs, average household earnings per capita, 
distance to a road, and average land size (Bruhn and McKenzie, 2009). 
 
𝑋𝑋2 are additional control variables we include in our preferred specification, namely 1990 and 
2010 measures of vegetation on the PFO's land, based on Landsat images (to control for any 
pre-trends in deforestation) and dummy variables for the date of the baseline satellite image. 
Because the treatment varies at the village level, we adjust for non-independence of errors within 
a village, i.e., we cluster on village. 
 
In the regressions, we weight observations by the proportion of the PFO's land with non-missing 
satellite data. As described in the previous section, because of cloud cover (and to a lesser degree 
because of land lying outside village boundaries), in the estimation sample we have data for on 
average 79% of the land circle. The proportion varies from less than 1% to over 99%; the 
histogram is shown in Appendix Figure A2. In essence, we have an aggregate outcome variable 
measured with a sampling rate that varies by observation, so to improve efficiency we weight by 
this sampling rate (Solon, Haider, and Wooldridge, 2015). 
 
We also estimate a model where the outcome is the change in tree cover between baseline and 
endline, i.e., that modifies equation (1) by constraining to be equal to 1. In addition, we estimate 
proportional effects using the inverse hyperbolic sine (IHS) transformation, which approximates 
the log function but is defined at 0 (Burbidge, Magee, and Robb, 1988). We also show results 
where the unit of observation is the village. 
 
In addition, we examine survey-based outcomes, estimating an equation analogous to (1). We 
control for the baseline outcome in cases where it was collected. We include a dummy variable 
for observations with missing baseline values, and impute the baseline value to be the sample 
mean for those observations. 
 

5. Impacts of the PES program  
 

5.1 Program take-up  
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Of the 564 PFOs in our sample in treatment villages, 180, or 32%, enrolled in the PES program. 
In addition, 6 PFOs in control villages (1%) enrolled; they resided in control villages but owned 
forest in treatment villages. Sampling and assignment to treatment were based on the village of 
residence, but CSWCT allowed a PFO to enroll any land located in a treatment village. Table 2, 
column 1, estimates the effect of treatment on take-up as a regression; residing in a treatment 
village increases take-up by 31.9 percentage points. 
 
Column 2 reports the treatment effect on PES payments (the total payments over the two years), 
which was 90,000 UGX, or $36. (In the tables, monetary amounts are reported in units of 10,000 
UGX, which is $4). Thus, per PFO who enrolled, the average payment was $113 ($36÷31.9%). 
Most of these payments (89%) were for avoided deforestation, with the balance for reforestation. 
On average, a treated PFO received 25.4% of the amount he was eligible for (column 4), implying 
that enrollees earned on average 80% of their eligible amount. Some enrollees violated the 
contract and received no payment, some fully complied and received 100%, and some partially 
complied (e.g., their seedlings died) and they received partial payment, at the discretion of 
CSWCT.15 
 
It is surprising that program take-up was so low. Enrollment confers option value to the PFO, even 
if he is unsure whether he wants to comply; if he then does comply, he will receive money, and if 
he does not, while he receives no payment, there is also no punishment. Moreover, with imperfect 
monitoring, there is a chance of a false positive in which the PFO deforests, CSWCT assesses 
that he complied, and he gets paid. 
 
To better understand why take-up was low, the endline survey asked treatment-village PFOs why 
they did or did not sign up for the program. The overwhelming reason for lack of take-up is 
mundane: Two thirds of PFOs who did not enroll were unaware of the program or did not know 
what it was about (see Appendix Figure A1). CSWCT's marketing efforts did not succeed in 
informing all PFOs about the program. Similarly, the logistics of enrolling were a barrier to 
enrollment. CSWCT collected the signed contracts on a particular day in each village, and if a 
PFO was unaware of this process or absent that day, he missed, or at least thought he had 
missed, his chance to enroll. Together, these reasons account for 77% of non-enrollment. These 
implementation problems could likely be addressed in future PES programs, leading to higher 
take-up. 
 
About 11% of non-enrollment is due to more fundamental reasons. Many PFOs found the PES 
contract complex and difficult to understand. In particular, many were worried that the contract 
might be a ploy to grab their land. While in future programs it might be possible to explain the 
PES contract more thoroughly to PFOs and assuage their concerns, this barrier to enrollment is 
rooted in lack of formal property rights, concerns about theft and corruption, and low levels of 
education, factors which are common in many of the low-income settings amenable to 
deforestation PES programs. The remaining 12% of non-enrollment is because the PFO preferred 
deforesting to the financial incentives so simply was not interested; CSWCT deemed him to not 
have eligible forest; or miscellaneous reasons. 
 
Besides asking PFOs why they did not take up the program, we can also use the baseline data 
to assess the determinants of take-up. Few PFO characteristics predict take-up, as shown in 
Appendix Table A3, which is consistent with take-up being largely related to supply factors such 

                                                            
15 In unreported results, we find that enrolling in the PES program did not crowd out participation in other environmental programs. No 
comparable program was offered in the area at the time. 
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as marketing rather than demand. Four of the characteristics we examine are significantly 
correlated with take-up. PFOs with more land, and less tree cover conditional on land owned, are 
more likely to enroll. In addition, PFOs who had cut trees for emergency or lumpy expenses 
recently were less likely to take up the program; as discussed by Jayachandran (2013), a limitation 
of PES programs that offer a steady stream of payments to preserve forest (or other 
environmental assets) is that even if the net present value of the payments exceeds the revenue 
from selling the timber, liquidity-constrained PFOs might choose immediate money over future 
PES payments. Also, the small minority who believe it is necessary to damage the environment 
to improve life have much lower take-up. 
 
Finally, we test whether take-up is systematically higher for those with lower counterfactual 
deforestation. To do so, we use the control group and regress the change in tree cover on the 
variables in Appendix Table A3, column 1, and use the results to calculate the predicted change 
in forest cover for treatment PFOs. Column 4 shows that take-up of the program is unrelated to 
predicted deforestation, again suggesting no selective take-up by those who would have anyway 
kept their forest intact.16 
 

5.2 Remote-sensing results  
 

5.2.1 Impacts of the PES program on forest cover  
 
The main results of the paper are presented in Table 3. Here we examine the effect of the PES 
program on tree cover. All columns control for the baseline value of the outcome and stratification 
controls (subcounty fixed effects and village-level variables that were balanced before 
randomization). Column 2 onward additionally control for the area covered by photosynthetic 
vegetation in 1990 and 2010 and dummy variables for the date of the baseline satellite image. 
 
As context for interpreting the treatment effects, it is valuable to first understand the business-as-
usual patterns of deforestation. In the control group, the average tree loss per PFO between 
baseline and endline is 0.35 hectares, which is 8.7% of baseline tree cover. This corresponds to 
5.8% loss per year. Note that this rate of tree loss is higher than most estimates of Uganda's rate 
of forest loss, which are based on changes in the edge of the forest. Our high-resolution data 
detects additional loss of trees due to selective tree-cutting within the forest, i.e., forest 
degradation. 
 
Column 1 shows that the PES program caused an increase in tree cover at endline, relative to 
the control group, of 0.25 hectares per treatment PFO. The treatment group experienced net tree 
loss, but significantly less than the control group. Column 2 adds in control variables for pre-
baseline vegetation, and the results are similar; the effect size is 0.27 hectares.17 This effect is 
statistically significant at the 5% level. This is our main specification, which we use later in the 
paper for heterogeneity and cost-benefit analyses. 
 
The coefficient on the baseline forest cover variable is close to 1, which is not surprising because 
a tree that is not cut down or does not die will grow a bit over two years, but is largely persistent. 
As such, the estimates are similar when estimated in changes (column 3). 

                                                            
16 The predicted change in tree cover has a standard deviation of 1.05, so the coefficient implies that when the variable is one standard 
deviation lower (i.e., more deforestation), take-up is 2.6 percentage points lower. 
17 The unreported coefficient on 2010 vegetation is positive, and the coefficient on 1990 vegetation is very similar in magnitude and 
negative, both with p-values < 0.01. These patterns indicate that, first, the Landsat vegetation variable provides additional information 
on baseline tree cover, and, second, vegetation loss in the two decades prior to the study is predictive of a loss in tree cover over the 
study period. 
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The magnitude of the treatment effect represents over half of their baseline to endline decrease 
in tree cover. This effect size is large, even larger than the take-up rate (although we cannot 
statistically reject that the effect size is the same as or less than the take-up rate). This suggests 
that the payments were not simply inframarginal to behavior, and, in fact, those who took up the 
program would have deforested more than the typical PFO, absent the program, which is quite 
surprising. 
 
One partial explanation for the large effects is that some non-enrollees thought they were enrolled 
in the program, and these PFOs might have avoided deforestation based on an incorrect belief 
that they would be paid if they did so.18 In the endline survey, we asked the treatment group if 
they were enrolled in the program. Of the 384 non-enrollees, 46 reported being enrolled. 
Meanwhile, 20 of the 180 actual enrollees (those who enrolled according to CSWCT's records), 
reported that they were not enrolled. Thus, self-reported take-up was 5 percentage points ((46-
20)/564) higher than official take-up. Note that these patterns could be due to measurement error 
in our survey data rather than PFO misperceptions. 
 
In addition, a small part of the tree gain could be from the reforestation component of the program. 
On average 0.1 hectare was set aside for reforestation per treated PFO, although the number of 
surviving trees per PFO was only 10, as shown in Appendix Table A4. Seedlings would not have 
grown large in two years, but suppose each had a crown area of 5 square meters or 0.0005 
hectares (which is likely an overestimate). This would mean that reforestation explains 0.005 
hectares of the forest gain. 
 
Another possible effect that would increase the effect size is if the program had positive spillovers 
to non-enrollees in treatment villages. For example, village norms about tree-cutting or about 
barring others from taking trees from one's land might have changed. 
 

5.2.2 Robustness of the results  
 
The appendix presents several robustness checks on the main results. Appendix Table A5 
examines proportional effects on tree cover using the IHS transformation. The treatment caused 
a 4.4% increase in tree cover, which represents about 61% of the 7.3% average reduction in tree 
cover in the control group. Note that this deforestation rate in the control group and proportional 
treatment effect size are somewhat smaller than when estimated in levels, implying that PFOs 
with a larger amount of baseline tree cover have a higher rate of deforestation and larger 
proportional treatment effect. 
Appendix Table A6 shows unweighted results, which do not take into account the extent of 
missing remote sensing data. The results are similar to the main results. 
 
Appendix Table A7 addresses the skewness of the land area distribution by dropping the top 1% 
of PFOs in terms of baseline forest cover. (The results are similar to dropping outliers in terms of 
endline forest cover or baseline land ownership). Not surprisingly, the results in levels are smaller 
in magnitude than in the main results, but remain statistically significant. The effect size 
corresponds to deforestation being 57% lower in the treatment group than in the control group. 
The last three columns of Appendix Table A7 use equally-sized land circles for each PFO that are 
based on the median land area in the sample, as an alternative approach to ensure that large 
PFOs are not driving the result. In addition, PFOs' self-reports on land area are often inaccurate, 

                                                            
18 These could be cases where the PFO misunderstood the procedure to enroll or where CSWCT made a mistake in not registering 
their contract. In any case, they did not receive any monitoring or payments, according to CSWCT's records. 
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and using the median size removes this noise (but also removes signal to the extent they are 
accurate). The median circles are on average smaller (because of the skewed distribution), and 
the magnitudes of forest cover in both the treatment and control group are smaller in levels, but 
the proportional change in forest cover is similar to the main results. 
 
Appendix Table A8 estimates the effects using alternatively-sized land circles. The first three 
columns show the results using circles whose area is the PFO's land area; unless the PFO's 
landholding is exactly a circle centered on his home, these circles will omit much of their land. We 
continue to find statistically significant treatment effects, though not surprisingly, the amount of 
tree gain in hectares is smaller; the circles are half the size, and the coefficient is 56% of the size, 
suggesting that these circles are too small to encompass the area where the program is having 
impacts. The next three columns show the results using circles that are 3 times as large as the 
PFO's land area. Again, we find positive, statistically significant impacts on tree cover. While these 
circles are 50% larger than our main specification, the treatment effect is only 31% larger, which 
suggests that circles twice as large as the landholding encompass most of the PFO's land and 
the area where the treatment effects occur. 
 
As described in the data section, we placed an order for the baseline QuickBird images in May 
2011, requesting that the study region be imaged as soon as possible. The majority of the region 
was imaged in May and June, but some of the area was not imaged until December 2011. The 
subcounty lotteries occurred between August and December 2011, which means the baseline 
image was taken after randomization in some cases. Hence, our arguably most important 
robustness check is to restrict the sample to cases where the subcounty lottery occurred after the 
date of the baseline satellite image. When we do so, we continue to find positive, statistically 
significant effects on tree cover, as shown in Appendix Table A9. The time span between baseline 
and endline images is longer in this subsample compared to the full sample (because we have 
dropped observations with late baseline data), so with a constant rate of deforestation, more 
deforestation should occur in the control group in this subsample, and, likewise, more 
deforestation should be averted in the treatment group. Indeed, we find a larger treatment effect 
than in the full sample, as well as a higher amount of deforestation in the control group. 
 
In summary, the results are robust to various potential concerns about the estimation. 
 

5.2.3 Threats to validity  
 
One concern in interpreting the treatment effect on tree cover is that PFOs might have simply 
shifted their deforestation to other land. The results presented above are net of several potential 
forms of such leakage. First, if PFOs preserved the land that CSWCT classified as forest and that 
was regulated under the PES contract but cut down other patches of trees on their land, our 
results measure the net effect because they examine the entire land owned by PFOs rather than 
just their natural forest. Second, the fact that the land circles we examine are larger than the land 
owned means we incorporate increased tree-clearing on nearby land as well. Third, there could 
be within-village shifting from one PFO to another. The low take-up rate suggests there was ample 
scope for this behavior; one way to game the PES program is for two PFOs to agree that one will 
enroll, the other will not, and they will do their joint tree-clearing on the non-enrollee's land. (Only 
one treatment village had 100% take-up). If the PFOs who engaged in this behavior are in our 
sample, then we also incorporate this type of shifted tree-clearing through our intent-to-treat 
estimates. 
 
Our PFO-level results, however, do not net out displacement of deforestation to others in the 
village who are not in our sample. To examine this potential concern, we also estimate village-
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level effects. By village-level, we do not mean that we sum up to the village level the land circles 
for the PFOs in our sample, but rather we use the entire area of the village, as defined by 
government boundaries. The last two columns of Table 3 present these results. While we have 
considerably less statistical power in this analysis, the treatment effects are positive and 
marginally significant when estimated in changes (column 5).19 To assess whether there are 
within-village spillovers, we can compare the village-level point estimate to the PFO-level 
estimate. Column 4 indicates a 4.31 hectare aggregate gain in tree cover per treatment village. 
In the analogous PFO-level specification (Table 3, column 2), we estimated a 0.273 hectare 
increase per PFO. We have on average 9.1 PFOs per village in our sample, but this 
underestimates the number of eligible PFOs because some did not complete our baseline survey. 
Our census identified 12 PFOs per village, and multiplying this number by the PFO-level effect of 
0.273 gives an aggregate effect of 3.27 hectares per village. The signature of within-village 
displacement would be if this 3.27 hectare effect among PFOs were larger than the village-level 
effect based on the boundaries of the village. Instead it is similar to and in fact smaller than the 
village-level estimate of 4.31 hectares.20 Thus, we find no evidence that tree-cutting merely 
shifted within the village. 
 
PFOs who lived near government forest reserves had an additional option to (illegally) take more 
trees from the reserves. However, Appendix Table A10, columns 1 and 2, which examine 
treatment effect heterogeneity based on distance to the forest reserves or the village being 
contiguous to the forest reserves (which applies to 17 of the 121 villages) show no evidence of 
this behavior. To recap, we find no evidence of PFOs simply shifting their deforestation within-
person or within-village or to government forest reserves, which suggests the PES program in 
fact led to additional forest cover. 
 
Another possibility that would bias the results is if the program had spillover effects on control 
villages. The results would be biased upward if the program increased deforestation in the control 
group. For example, treatment PFOs might have sought trees from control villages (although this 
seems unlikely given that there was untapped potential to procure trees from non-enrollee PFOs 
within their village). A more likely form of spillover is higher demand in control villages from outside 
timber dealers because supply had dried up in treatment villages. Another possible spillover is 
that the control group was upset about not receiving the program and reacted by deforesting more 
than usual. To test for these three mechanisms, we examine whether there is greater tree loss in 
control villages that are closer to treatment villages. We find no evidence of such spillovers, as 
shown in Appendix Table A10, column 3. While this test sheds light on local spillovers, it does not 
assess if there were region-wide effects. For example, there could be an aggregate increase in 
demand for timber in all of our control villages caused by the PES program. The study region 
feeds into a national timber market, and the PES program was relatively small, so the program 
seems unlikely to have had large general equilibrium effects, although such effects would be more 
pertinent if the program were scaled up. Even though we cannot identify price effects that are 
aggregate to our study region, we did ask questions on the endline survey about visits by timber 
dealers. Columns 4 and 5 of Appendix Table A10 show that there was no increase in visits by 
timber dealers in control villages relative to treatment villages. 
 
Of course, the reduction in deforestation in the study region might also be offset by increases 
outside the region. The premise of this and other PES programs is that demand for timber 

                                                            
19 The lower power is not surprising given that the land owned by the PFOs in our sample comprises, on average, only 21% of the 
total land in the village. 
20 Instead of scaling by eligibility, one can also scale by the percent of program enrollees who are in our sample, which is 60%. 
Applying this scale factor to our PFO-level results predicts a 4.13 hectare gain in tree cover per village, which is again smaller than 
our actual village-level estimate. 
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products is not fully inelastic, so program effects will not just be undone elsewhere. People will 
reduce consumption or substitute toward options with a lower carbon footprint. For example, if 
PFOs clear less forest for subsistence farming, their demand for food might be met by farms with 
much higher agricultural yield. 
 
A different type of concern is related to PFOs' expectations. PFOs were told that the program 
would last for two years, and the study results might or might not lead to program continuation 
and expansion in a few years. In the control group, behavior might not reflect “business as usual” 
if PFOs anticipated getting the program in the future. A priori, these anticipation effects could go 
in either direction. Perhaps PFOs who thought it was likely the program would come to their village 
kept their forest intact to be eligible for the program (which would bias the estimates toward 0), or 
perhaps they wanted to deforest while they could (bias away from 0). Similarly, the impacts in the 
treatment group might vary with their expectations. Some PFOs might have thought the program 
would last forever, and because non-compliers were not allowed to rejoin the program later, this 
misperception about the program horizon would have raised the valuing of complying in the short 
run. The last two columns of Appendix Table A10 examine these possible effects due to 
expectations. First, we examine whether deforestation in the control group varies with whether 
the PFO thinks the program will come to his village, which we asked on the endline survey in 
control villages. Second, we examine whether the program effects are larger for PFOs in the 
treatment group who think the program will last longer than it actually did; we asked this question 
on the endline survey in treatment villages. We do not find evidence that either of these types of 
expectations affected how much PFOs deforested. 
 

5.2.4 Heterogeneous impacts  
 
Having shown the average treatment effects, we next examine heterogeneity in the effects by 
baseline characteristics. We first analyze how the effects vary with the initial amount of forest. 
The direction of this heterogeneity is not clear a priori. On the one hand, those with more forest 
have more potential forest to keep intact, which could lead to larger program impacts. On the 
other hand, the fact that more of their forest is intact suggests they may have deforested less in 
the past, so they might have lower counterfactual tree-cutting and smaller program effects. We 
find that the first of these possibilities is more relevant: Tree gain is larger for PFOs with more 
tree cover at baseline (Table 4, column 1). Column 2 shows this same pattern holds using the 
proportion of land that is tree-covered. 
 
The next four columns examine heterogeneity by whether and why the PFO reported clearing 
trees recently. Those who had cut trees recently exhibit larger treatment effects, and this seems 
to be more true for those who cut trees for timber products as opposed to cultivation. Column 6 
shows that, despite the lower take-up among those who cut trees for emergency or lumpy 
expenses discussed earlier, the intent-to-treat effect on forest cover seems to be larger for them 
(but statistically insignificantly). Column 7 shows that the higher the revenue from timber products 
at baseline, the larger the treatment effect. 
 
The pattern seen across the first seven columns is that if a characteristic is predictive of more 
deforestation in the control group between baseline and endline (negative main effect of 
Characteristic), it is also associated with more averted deforestation in the treatment group 
(positive interaction effect). Column 8 tests for this pattern more comprehensively. Using the 
control group, we regress the change in tree cover on several baseline characteristics (the same 
ones used to predict take-up in Appendix Table A3). We then use the results to calculate the 
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predicted change in forest cover for both control and treatment PFOs.21 The negative interaction 
effect in Column 8 indicates that the PES program caused larger gains in forest cover for treated 
PFOs whose forest loss, absent the program, would have been larger. This pattern reaffirms what 
earlier results suggested: To first approximation, enrollment in the program was unrelated to 
predicted counterfactual deforestation, enrollees complied and refrained from deforesting, and as 
a result, the largest program impacts are seen for those who would have deforested the most had 
the program not been offered to them. 
 

5.3 Household survey results  
 
We now turn to examining outcomes using the endline household survey data. 
 

5.3.1 Self-reported tree-cutting and other behaviors related to land  
 
Self-reports by PFOs corroborate the remote-sensing result that the intervention reduced 
deforestation. As seen in Table 5, treatment group PFOs are less likely to have cut any trees in 
the past year. An important caveat is that PFOs might have given inaccurate answers, for example 
if enrollees thought that admitting to tree-cutting on the survey would jeopardize their PES 
payouts. 
 
Attrition from the endline survey was higher in the treatment group than in the control group, and 
in particular, treated PFOs who did not take up the program were less likely to participate in the 
survey. As such, attrition likely biases upward the magnitude of the treatment effects. We 
therefore also present Lee bounds on the treatment effects for the survey results. The lower-
magnitude bound provides a conservative estimate of the effect.22 Table 5, column 1, shows that 
the point estimate for cutting any trees is -0.14 in the untrimmed sample, and the smaller-
magnitude Lee bound is -0.10. 
 
Deforestation to clear land for cultivation and to obtain timber products both seem to have 
decreased, although there are wide bounds on these estimates. Columns 5 to 7 show that in the 
treatment group, total revenue from timber products is lower by 2.89 million UGX ($116), or 23 
log points, and there is a 4 percentage point (27%) lower likelihood of receiving any revenue from 
timber in the past year. These point estimates are based on the untrimmed sample and are 
suggestive, but the Lee bounds indicate that we cannot say anything conclusive about these 
outcomes. 
 
Complying with the PES contract entails reducing one's own tree-cutting, but in our context, where 
others are given access to forest or might encroach on it, complying also means ensuring that 
others do not clear trees on one's land. As seen in Table 6, there is a roughly one third drop in the 
likelihood of allowing people to gather firewood from the forest (even though gathering fallen wood 
was allowed under the contract). There is no significant decrease in access granted to others who 
take trees from the land (though the point estimate is suggestive of such an effect). The program 
significantly increased how much PFOs patrol their land, as seen in column 3. While preventing 
illegal activity, in principle, should be done by the state, this role often falls to the individual in this 
context. PFOs have a private incentive to prevent theft of their forest even absent the PES 

                                                            
21 The predicted value used as the regressor for control group observations is estimated excluding that observation itself to avoid bias 
(Abadie, Chingos, and West, 2013). 
22 Lee bounds make a monotonicity assumption about attrition: Treatment status affects selective attrition in only one direction. With 
more attrition in the treatment group, the upper (lower) bound assumes that selective attrition in the treatment group is by those with 
high (low) outcome values, and thus trims observations in the control group with high (low) outcomes such that the attrition rate is 
equalized between groups  (Lee, 2009). 
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program, but the program seems to have increased the value of doing so and induced more 
patrolling. Treatment PFOs did not respond to the program by fencing their land, however. 
 
A reduction in others' right to gather firewood and access PFOs' land is very likely a regressive 
effect. In our study region, it is the norm for landowners to let poorer neighbors gather firewood 
or very small trees (“poles”) for building material. Thus, the program could have had a negative 
impact on non-forest-owners, unless PFOs found some other way to make transfers to their 
poorer neighbors. Interestingly, the program also seems to have affected perceived property 
rights: Treated PFOs are more likely to report that their ownership of their forest strengthened in 
the past two years, though the point estimate is small and the lower bound estimate is insignificant 
(column 5). The program neither increased nor decreased disputes with neighbors about land 
(column 6). 
 

5.3.2 Socioeconomic impacts  
 
The last set of survey outcomes we examine is related to economic well-being. In principle, the 
program could have either increased or decreased current income. The PES payments could 
have enriched PFOs, or they could have tolerated a reduction in current income in exchange for 
wealth accumulation in the form of intact forest. In any case, the net effect is unlikely to be large 
in magnitude. The payment levels were chosen to be of the same order of magnitude as monetary 
opportunity costs, and the treatment caused a reduction in deforestation so payments were not 
inframarginal to behavior. Thus, it seems unlikely that the program would lead to a large increase 
in income, except perhaps for those with a particularly low opportunity cost, where a smaller 
payment would have sufficed to induce their reduction in deforestation, leaving them with 
inframarginal cash on the intensive margin. At the same time, because take-up was voluntary, 
decreases in permanent income are unlikely, and credit constraints or impatience probably 
prevented most PFOs from incurring a large decrease in current income, even if the value of their 
forest assets increased. 
 
Measuring income is difficult because most individuals are self-employed or casual laborers, so 
we use expenditures as a proxy for current income. Table 7, columns 1 to 3, examine spending 
in three broad categories: food, non-food, and alcohol and tobacco. The survey asked about 
spending in the past 30 days or 6 months in several finer categories, and we aggregated the data 
after harmonizing the lookback period. We do not find strong evidence of either an increase or 
decrease in expenditures. Non-food spending shows a positive effect but the lower bound effect 
is insignificant; the point estimate of a 5.3% increase is equivalent to 10,900 UGX ($4.35) per 
month. Column 4 examines the respondent's self-reported status on a 9-point income ladder, 
relative to his community. The point estimate is suggestive of an increase in self-reported relative 
income, but the result is not particularly strong. 
 
Another effect the program might have had was on borrowing. Those who would have cleared 
trees for large spending needs might have switched to taking out loans, or if the program 
increased current income, it could have, in turn, decreased the need to borrow. We find no impact 
on loans (column 5). Finally, columns 6 and 7 examine two measures of child health, malaria and 
diarrhea. We find some suggestive evidence that the program decreased the self-reported rate of 
child diarrhea. Overall, we interpret the results in Table 7 as providing weak evidence that the 
program may have had some, but not major, positive effects on economic well-being of eligible 
PFOs and stronger evidence that it did not significantly decrease their economic well-being. 
 

6. Cost-effectiveness  
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We next convert the program's effect on tree cover into averted CO2 emissions, calculate the 
monetary value of the averted emissions, and compare this benefit to the program costs. 
 
Amount of delayed CO2 emissions 
 
The program averted 0.268 hectares of deforestation per PFO eligible for the program. This 
estimate uses our intent-to-treat gain in tree cover from our main specification (Table 3, column 
2) and subtracts 0.005 hectares potentially due to reforestation.23 The average duration from 
baseline to endline was 1.5 years, but the payment data we use are for 2 years of compliance. 
To be conservative, we ignore the fact that the amount of averted deforestation likely accumulated 
during the remaining half year of the program. 
 
We use Global Forest Map satellite-based estimates of biomass in forests, available at a 30-meter 
resolution, to estimate the biomass and carbon in forestland in our study villages; the average is 
153.5 tons of carbon per hectare (World Resources Institute, 2016).24 The carbon stored in other 
vegetation (e.g., agricultural cultivation) is negligible compared to trees, so this amount also 
represents the change in carbon stocks from tree-clearing (Houghton, 2007). To be conservative, 
we ignore the flow of carbon that trees absorb, assuming the forest is close to carbon-neutral if it 
remains intact. 
 
Combining these numbers, averted carbon per eligible PFO is 41.1 tons. Equivalently, the averted 
CO2 is 150.7 tons. (A CO2 molecule is 3.67 times as heavy as a carbon atom.) 
 
Program costs per ton of delayed CO2 emissions 
 
The average payment per PFO (inclusive of payments for reforestation) is $37.70 over the two 
years of the program.25 Thus, the program paid $0.25 ($37.70 150.7 tons) to delay each ton of 
CO2 emissions.26;27 We assume this full amount is a program cost, but note that payments in 
excess of the amount required to gain compliance are not true economic costs. 
 
Payments to PFOs are not the only program cost. There are also costs for monitoring enrollees' 
forests and for program administration. Monitoring costs were $88 per program enrollee, or $28 
per eligible PFO.28 We assume an additional cost per eligible PFO of $30 for marketing of the 
program and overall program management. We further assume a 10% transaction fee for PES 
payments. Combining these assumptions, the administrative costs amount to $0.41 per averted 
ton of CO2. 
 
The monitoring costs could be considerably lower at scale-up because, for the sake of the 
randomized trial, the program was rolled out in a geographically dispersed set of villages. It seems 

                                                            
23 We ignore the CO2 that the newly planted trees absorb during the intervention, as the amount is small. 
24 This value is the carbon per hectare of forest with at least 67% tree cover whereas our effect size is in hectares of tree cover, so 
we might be underestimating the carbon stored per hectare of tree cover. 
25 This number is slightly higher than our full-sample estimate of $36 (Table 2, column 2). The estimate of impacts on tree cover is 
based on the 995 PFOs with non-missing remote sensing data, and their forest area is slightly larger than average because small 
land circles are more likely to be fully cloud-covered. The average payment among the subsample with non-missing remote sensing 
data is $37.70. 
26 One might want to include potential payments to the net 5% of non-enrollees who thought they had enrolled but were not paid. 
Scaling up by (32%+5%)/32% yields $0.29 in payments per ton of CO2. 
27 If we use our village-level instead of PFO-level estimates for this calculation, we find a lower cost: $0.19 in payments per averted 
ton of CO2. 
28 CSWCT hired forest monitors who each covered 30 enrollees. Monitors were paid $90 per month, and for transportation, were given 
on average two bicycles each. Adding in repair costs, the bicycles cost $480 per monitor over the course of the program. 
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reasonable that with greater geographic density, monitors could conduct 2 rather than 1 spot 
check per day.29 In this case, the administrative costs of the program would be $0.32 per averted 
ton of CO2. 
 
Thus, our best guess of the total program costs at scale-up—incentive payments plus 
administrative costs—is $0.57 per averted ton of CO2. 
 
Social benefit per ton of delayed CO2 emissions 
 
The amount paid to avert carbon emissions can be compared to the “social cost of carbon” or 
SCC (which is, more precisely, the social cost of CO2). The middle estimate used by the United 
States EPA for 2012 is $39 (in 2012 USD).30 
 
The SCC represents the benefit of permanently averting carbon emissions. While this program 
was intended to be a prototype of what could be a permanent program, it only ran for two years. 
The program effects we estimate represent a delay in tree-cutting. To quantify the delay length, 
we need to make assumptions about deforestation after the program ended, which we do not 
have direct measurements of. Our base case scenario assumes that PFOs deforest at a 50% 
higher rate than usual after the program ends until they catch up on all their postponed 
deforestation, thus undoing the 2 years' worth of treatment effects over 4 years. The average 
delay in deforestation in this scenario is 3 years, assuming a uniform rate of deforestation. We 
also consider two more extreme scenarios. First, we assume PFOs catch up on all their delayed 
deforestation immediately when the program ends, in which case the benefits are for a delay of, 
on average, 1 year. Second, we assume PFOs resume their normal rate of deforestation after the 
program ends, rather than an accelerated rate; this is equivalent to a permanent two-year delay 
in both the deforestation that would have occurred during the intervention as well as all later 
deforestation.31 
 
When a tree is cleared, its carbon is not all immediately emitted into the atmosphere. We assume 
that the average lag between tree-cutting and carbon emissions is 10 years.32 The value of 
avoided future emissions depends on both the discount rate (which decreases the value) and the 
growth rate of the SCC (which increases the value). We use 3% for the discount rate (the EPA's 
middle rate) and 1.9% for the growth of the SCC, based on EPA projections (Interagency Working 
Group on Social Cost of Carbon, 2013). 
 
Putting these assumptions together, the discounted benefit of delaying a ton of CO2's worth of 
tree-cutting for our base case (treatment effects undone after 4 years) is $1.11. The CO2 benefits 
are twice as large as the program costs. 
 
If, instead, PFOs catch up on their backlog of avoided deforestation the moment the program 
ends, the benefit-cost ratio falls to 0.7. Alternatively, if PFOs resume deforesting at their typical 
                                                            
29A forest monitor was supposed to conduct 1 spot check every one or two months per PFO; at once per 6 weeks, he conducted 
slightly fewer than 1 spot check per day, assuming 25 work days per month. 
30 This value is the average SCC across the three integrated assessment models used by the US Environmental Protection Agency 
(EPA), and assumes a discount rate of 3%, which is the EPA's median scenario. The SCC for 2010 and 2015 are $33 and $38 in 
2007 US dollars (USD); interpolation gives a SCC for 2012 of $35 in 2007 USD, or $39 per metric ton of CO2 in 2012 USD. 
31 We assume that PFOs clear their forest at the same rate we observe between baseline and endline (8.7% of their stock of trees 
every two years) until their forest is depleted. The amount of deforestation that is delayed for two years, discounted back to the present, 
is 2.55 hectares per PFO, or 9.4 times the amount observed during the intervention. 
32 The exact time pro le depends on many complex factors and is beyond the scope of this paper. A 10-year delay is consistent with 
45% of the biomass being burned with immediate release, 45% decomposing with a mean survival of 15 years, and 10% being used 
as lumber with the carbon stored for 30 years. 
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rate after the program ends, the benefit cost-ratio rises to 12.3. This last scenario of a permanent 
two-year delay in deforestation is the relevant one for extrapolating to a longer-lasting program: 
If the program effects we observe over two years persist with a permanent intervention, the net 
present cost to permanently avert a ton of CO2 would be $3.10, much less than the social cost of 
carbon. Note that this is a very tentative extrapolation.33 
 
Table 8 summarizes the PES program costs and benefits per ton of averted CO2 emissions for 
our base case, the two extreme scenarios discussed above, and several alternative scenarios. 
Note that these cost-benefit numbers have a wide confidence interval. Not only do we need to 
make assumptions about deforestation after the program end, but the amount of biomass in 
forests and the effect of the program on tree cover are measured with error. But these figures 
suggest that, under most assumptions, the program costs are lower than the social benefit of the 
delayed tree-cutting and CO2 emissions. 
 
Another way to benchmark the program is to compare it to other environmental programs. Per 
ton of averted CO2, this program is considerably less expensive than most alternative policies in 
place in the US to reduce carbon emissions such as hybrid and electric car subsidies; per averted 
ton of CO2, those two policies cost 4 to 24 times as much as the carbon benefits they generate 
(Knittel, 2012; Gayer and Parker, 2013). Alternative programs in developing countries are also 
often cost-ineffective; for example, per ton of averted CO2, giving households incentives to 
upgrade their refrigerators and air conditioners in Mexico costs over 10 times the SCC (Davis, 
Fuchs, and Gertler, 2014). 
 
A very important caveat is that these cost-benefit calculations do not quantify the carbon impacts 
of behavioral responses beyond tree-cutting in the study area. For example, how much less fuel 
do urban consumers use? What fuel sources do they substitute toward? Many of these impacts 
occur outside the study area and are beyond the scope of this study. In addition, while our analysis 
does not detect general equilibrium effects, such effects could be important if PES programs were 
implemented at large scale. 
 
Beyond averted CO2, there are also other benefits of the program. For example, the program 
redistributes from the wealthy to the poor. While PFOs are not poor relative to their neighbors, 
they are poor in global terms. If funded through international carbon markets, PES program 
costs—both the payments to PFOs and even the administrative costs incurred by local 
organizations like CSWCT—would represent income distribution. We did not find large 
improvements in consumption for participants, but they accumulated wealth in the form of a more 
valuable forest, with no apparent loss to current income. Another benefit that we cannot quantify 
with our study design is increased biodiversity, for example through a higher likelihood of the 
chimpanzee population surviving. Biodiversity is valuable to society per se and, in the case of 
chimpanzees, boosts Uganda's tourism revenue. 
 
On the opposite side of the ledger, the program has other costs besides program implementation 
costs. As seen in our survey results, one effect of the program was that PFOs gave their neighbors 
less access to their land to gather firewood. Most of those affected in this manner are the poorest, 
landless individuals in the community, and the program could have made them worse off. 
Moreover, even if the program did not decrease anyone's absolute wealth (inclusive of access to 
others' forest), it likely increased within-village inequality because those eligible for the program 
                                                            
33 We assume the payments needed to deter deforestation rise over time at the same rate as the SCC. The costs might rise faster 
than this rate if the opportunity cost of avoided deforestation is convex in the delay length or grows rapidly due to rising prices of timber 
products. The restrictions on tree-cutting in the PES contract were tailored to the two-year duration; one would likely want to modify 
the contract conditions for a longer-duration program. 
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were relatively wealthy to begin with. 
 

7. Conclusion  
 
This paper evaluated an important policy tool being used to mitigate climate change, namely 
Payments for Ecosystem Services in which financial incentives are given to keep forest intact. 
While the logic of using financial incentives to reduce deforestation is well-established, a concern 
with such a program is that many of the payments will be inframarginal to behavior, so the program 
will have minimal impact on deforestation per dollar spent. 
 
We measure causal impacts of a PES program in Uganda through a randomized controlled trial 
in which 60 of 121 study villages received the two-year program. Using high-resolution satellite 
images, we find that the program led to a sharp reduction in deforestation. Our cost- benefit 
calculations suggest that the program costs were less than the social benefit of the delay in CO2 
emissions from deforestation that was generated by the program. 
 
Thus, in this setting, PES was effective and did not suffer the problems of inframarginality or 
leakage that could potentially dampen its cost-effectiveness. Future research is needed to assess 
longer-term programs. It is possible that if PFOs learn that monitoring is imperfect or if their initial 
pro-environment motivations for complying fade, the impacts of the program would also fade. 
Nonetheless, we view our results as a proof-of-concept that PES programs can be a cost-effective 
way to avert deforestation in developing countries — and hence a powerful tool to mitigate climate 
change. 
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Tables  
 

Table 1: Descriptive statistics and randomization balance 

 
Notes: The table reports subsample means with standard deviations in brackets. The last column reports the 
regression-adjusted difference in mean between the treatment and control subsample divided by the pooled standard 
deviation, and an asterisk denotes that this difference has a p-value less than 0.10. The standardized difference and 
p-value are based on a regression with subcounty fixed effects, with clustering at the village level. IHS denotes the 
inverse hyperbolic sine transformation of the variable. Weighted forest cover is the mean weighted by the proportion of 
the forest owner's land with valid satellite data

 Treatment Control Std. diff. 
 (1) (2) (3) 
Household head's age 47.499 47.589 0.003 
 [13.605] [14.659]  
Household head's years of education 7.715 7.931 -0.056 
 [4.003] [4.187]  
IHS of self-reported land area (ha) 4.062 4.004 0.053 
 [1.021] [0.968]  
Self-reported forest area (ha) 1.727 2.068 -0.042 
 [3.318] [12.413]  
Cut any trees in the last 3 years 0.845 0.858 -0.031 
 [0.362] [0.350]  
Cut trees to clear land for cultivation 0.236 0.241 -0.016 
 [0.425] [0.428]  
Cut trees for timber products 0.704 0.721 -0.037 
 [0.457] [0.449]  
Cut trees for emergency/lumpy expenses 0.250 0.292 -0.088 
 [0.433] [0.455]  
IHS of total revenue from cut trees 1.238 1.397 -0.085 
 [2.118] [2.248]  
Rented any part of land 0.163 0.198 -0.091 
 [0.370] [0.399]  
Dispute with neighbor about land 0.218 0.206 0.035 
 [0.413] [0.405]  
Involved in any environmental program 0.100 0.111 -0.035 
 [0.301] [0.315]  
Agree: Deforestation affects the community 0.539 0.548 -0.014 
 [0.499] [0.498]  
Agree: Need to damage envi. to improve life 0.064 0.043 0.089 
 [0.245] [0.204]  
Tree cover in land circle (ha) 4.355 3.845 0.050 
 [12.466] [9.178]  
Weighted tree cover in land circle (ha) 4.403 3.999 0.057 
 [11.643] [8.252]  
% of land circle with tree cover 0.199 0.209 -0.044 
 [0.161] [0.157]  
% change in vegetation, 1990-2010 0.035 0.037 -0.016 
 [0.066] [0.058]  
Observations (forest owners) 564 535  
Number of villages 60 61  
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Table 2: Program take-up 
      

 Take-up 
Amount 

paid 

Amount 
paid for 
avoided 

deforesta- 
tion 

Proportion 
of eligible 
amount 

paid  

 (1) (2) (3) (4)  

Treated 0.319*** 8.991*** 7.962*** 0.254***  
 [0.030] [1.862] [1.799] [0.026]  
      

Control group mean 0.011 0.416 0.403 0.007  
Observations 1,099 1,099 1,099 1,099  
      
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All 
columns include subcounty fixed effects and the four village-level baseline variables used to balance the randomization: 
number of PFOs in baseline sample, average weekly earnings per capita, distance to the nearest main road, and 
average size of the reported land nearest the dwelling. Amount paid and Amount paid for conservation are in 10,000 
UGX. Outcome data are from CSWCT administrative data. 
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Table 3: Effect of PES program on forest cover 
 
 PFO-level land circles  Village boundaries  
 Tree cover Tree cover Change in  Tree cover Change in  
 (ha) (ha) tree cover  (ha) tree cover  
 (1) (2) (3) (4) (5)  
       

Treated 0.246** 0.273** 0.273** 4.315 4.650*  
 [0.109] [0.107] [0.107] [2.660] [2.607]  

Baseline outcome 0.998*** 1.005***   0.953***   
 [0.034] [0.072]  [0.026]   
       

Control group mean 3.650 3.650 -0.349 155.530 -13.371  
Control variables No Yes Yes  Yes Yes  
Observations 995 995 995 121 121  
        
 
Notes: Standard errors are clustered by village in columns 1 to 3 and are heteroskedasticity-robust in columns 4 and 
5. Asterisks denote significance: *p < .10, ** p < .05, *** p < .01. All regressions and means are weighted by the 
proportion of available satellite data. Tree cover is measured in hectares (ha). All columns include subcounty fixed 
effects and the four village-level baseline variables used to balance the randomization. The control variables included 
in columns 2 to 5 are the 1990 and 2010 area covered by photosynthetic vegetation and dummy variables for the date 
of the baseline satellite image. The first 3 columns use a land circle centered on the PFO's home that is twice his self-
reported land area, and the next 2 columns use village boundaries. 
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Table 4: Heterogeneous effects on forest cover 
 
     Heterogeneous treatment effects on tree cover by:     
             

 
 

 

Above- 
median 

tree cover 
in land 
circle 

% of land 
circle with 
tree cover 

Cut any 
trees in 

the last 3 
years 

Cut trees 
to clear 
land for 

cultivation 

Cut trees 
for timber 
products 

Cut trees 
for emergency 

/lumpy expenses 

IHS of 
total 

revenue 
from cut 

trees 

Predicted 
change in 
tree cover   

 (1) (2) (3) (4) (5) (6) (7) (8)   
Treat x Characteristic 0.469** 1.964** 0.429** 0.032 0.344** 0.408* 0.122*** -0.694**   
 [0.200] [0.927] [0.171] [0.133] [0.167] [0.220] [0.043] [0.295]   
           
Treated  0.021 -0.157 -0.092 0.269** 0.021 0.147 -0.015 -0.006   
  [0.070] [0.150] [0.138] [0.119] [0.126] [0.091] [0.081] [0.086]   
             
Characteristic -0.578*** -3.001** -0.329** 0.071 -0.334** -0.411** -0.105*** 0.523   
   [0.199] [1.176] [0.131] [0.116] [0.139] [0.196] [0.038] [0.352]   
           

Observations 995 995 993 995 995 995 993 994   
             
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. The outcome variable in all columns is endline tree 
cover, which is measured in hectares. All regressions are weighted by the proportion of available satellite data. All columns include subcounty fixed effects, four 
village-level baseline variables used to balance the randomization, the baseline outcome, 1990 and 2010 photosynthetic vegetation, and dummy variables for the 
baseline satellite date. In column 8, predicted tree loss is the predicted value from the regression reported in Appendix Table A3, column 3. 
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Table 5: Effects on self-reported tree-cutting 

 

 

Cut any 
trees in the 

last year 

Cut trees 
to clear 
land for 

cultivation 

Cut trees 
for timber 
products 

Cut trees for 
emergency/ 

lumpy expenses 

Total 
revenue 
from cut 

trees 

IHS of total 
revenue 
from cut 

trees 

Any 
revenue 
from cut 

trees in the 
last year  

 (1) (2) (3) (4) (5) (6) (7)  
Treated -0.140*** -0.034* -0.090*** -0.027** -28.929 -0.232* -0.041*  
 [0.034] [0.018] [0.030] [0.013] [21.639] [0.118] [0.021]  

Baseline outcome 0.116*** 0.065*** 0.134*** 0.028* 0.023 0.143*** 0.069***  
 [0.039] [0.023] [0.029] [0.016] [0.040] [0.031] [0.024]  

Lee bound (lower) -0.162*** -0.041** -0.107*** -0.031** -31.575 -0.312** -0.050**  
 [0.035] [0.018] [0.030] [0.013] [22.719] [0.120] [0.022]  

Lee bound (upper) -0.103*** 0.012 -0.048* 0.021* 5.905** 0.065 0.003  
 [0.033] [0.016] [0.028] [0.010] [2.339] [0.105] [0.020]  
         
Control group mean 0.453 0.085 0.339 0.069 32.900 0.823 0.152  
Control group SD [0.498] [0.279] [0.474] [0.254] [446.503] [2.033] [0.359]  
Observations 1,018 1,018 1,018 1,018 1,018 1,018 1,018  
Observations (Lee bounds) 994 994 994 994 994 994 994  
         
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All columns include subcounty fixed effects and the 
four village-level baseline variables used to balance the randomization. Total revenue from cut trees is in 10,000 UGX. IHS denotes inverse hyperbolic sine 
transformation. For observations where the baseline outcome is missing, we impute the value as the sample mean, and include in the regression a dummy variable 
for observations with imputed baseline values. Outcomes refer to the previous one year; baseline values refer to the previous three years. 
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Table 6: Effects on land use and protection of land 
 

 

Allow others 
to gather 
firewood 
from own 

forest 

Decreased 
access to 

others who 
take trees 
from forest 

in last 2 
years 

Increased 
level of 

patrolling 
the forest in 
last 2 years 

Has any 
fence around 

land with 
natural 
forest 

Claim to 
ownership of 

forest 
became 

stronger in 
last 2 years 

Had dispute 
with 

neighbors 
regarding 

land in last 
2 years  

 (1) (2) (3) (4) (5) (6)  
Treated -0.170*** 0.039 0.109*** 0.036 0.071** -0.014  
 [0.033] [0.024] [0.039] [0.033] [0.033] [0.025]  

Baseline outcome    0.013  0.102***  
    [0.089]  [0.031]  

Lee bound (lower) -0.185*** 0.033 0.094** 0.006 0.049 -0.024  
 [0.033] [0.025] [0.040] [0.033] [0.032] [0.026]  

Lee bound (upper) -0.146*** 0.063** 0.132*** 0.054 0.082** 0.027  
 [0.032] [0.025] [0.040] [0.033] [0.033] [0.023]  
        

Control group mean 0.427 0.202 0.378 0.667 0.663 0.140  
Control group SD [0.495] [0.402] [0.485] [0.472] [0.473] [0.347]  
Observations 976 980 984 1,020 999 1,020  
Observations (Lee bounds) 957 965 965 998 982 998  
        
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All columns include subcounty fixed effects and the 
four village-level baseline variables used to balance the randomization. For observations where the baseline outcome is missing, we impute the value as the sample 
mean, and include in the regression a dummy variable for observations with imputed baseline values. For columns with no baseline coefficient reported, the variable 
was not collected in the baseline survey. 
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Table 7: Socioeconomic effects 
 

 

IHS of food 
expend. in 

last 30 days 

IHS of 
non-food 

expend. in 
last 30 days 

IHS of alco- 
hol/tobacco 
expend. in 

last 30 days 

9-step 
income 
ladder 

Has 
outstanding 

loan or 
repaid a loan 
in past year 

Child was 
sick with 
malaria in 

last 30 days 
(age 0-15) 

Child was 
sick with 

diarrhea in 
last 30 days 

(age 0-5)  
 (1) (2) (3) (4) (5) (6) (7)  
Treated 0.065 0.156** -0.010 0.214* -0.009 -0.031 -0.064**  
 [0.074] [0.066] [0.062] [0.114] [0.024] [0.029] [0.032]  

Baseline outcome 0.527*** 0.648*** 0.334*** 0.381*** 0.233*** 0.182*** 0.090  
 [0.037] [0.028] [0.029] [0.036] [0.032] [0.040] [0.068]  

Lee bound (lower) -0.029 0.053 -0.072 0.064 -0.049** -0.105*** -0.118***  
 [0.070] [0.064] [0.060] [0.114] [0.023] [0.029] [0.033]  
Lee bound (upper) 0.144* 0.215*** 0.090 0.432*** 0.011 0.042 0.034  
 [0.075] [0.064] [0.059] [0.110] [0.025] [0.030] [0.030]  
         

Control group mean 2.524 4.363 0.613 4.034 0.770 0.401 0.202  
Control group SD [1.177] [1.354] [1.026] [2.080] [0.421] [0.490] [0.403]  
Sample Households Households Households Households Households Children Children  
Observations 1,020 1,020 1,020 1,016 1,019 2,266 498  
Observations (Lee bounds) 998 998 998 994 996 2,145 470  
         
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p <.05, *** p < .01. All columns include subcounty fixed effects and the 
four village-level baseline variables used to balance the randomization. IHS denotes inverse hyperbolic sine transformation. For observations where the baseline 
outcome is missing, we impute the value as the sample mean, and include in the regression a dummy variable for observations with imputed baseline values. The 
outcome in column 4 is the respondent's rating of his income relative to others in his community on a 9-step ladder. In column 6 and 7, each observation is a child 
and child age-in-years fixed effects are included. Column 6 controls separately for the baseline prevalence among children 0 to 7 and 8 to 15 years old. 
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Table 8: Cost-benefit analysis 
 

 Scenario 

Benefit 
per ton of 

CO2 

Cost per 
ton of 
CO2 

Cost- 
benefit 
ratio  

1. Base case: Program effects undone over 4 years $1.11 $0.57 0.51  
      

2. Program effects accumulate for final 6 months $1.11 $0.43 0.38  
      

3. Program effects undone immediately $0.37 $0.57 1.52  
      

4. Deforestation resumes at normal rate (permanent delay) $0.74 $0.06 0.08  
      

5. Program effects undone over 2 years $0.74 $0.57 0.76  
      

6. Avg time until emissions is halved to 5 years $1.17 $0.57 0.48 
 
 

      

7. Avg time until emissions doubled to 20 years $1.00 $0.57 0.57  
      

8. Monitoring rate remains at 1 spot check per day $1.11 $0.66 0.59  
      
  
Notes: This table compares the costs of the PES program, measured per ton of averted CO2 emissions, with the social benefit of the averted emissions. The base 
case assumes (a) no further treatment effects during the 0.5 years between endline satellite data collection and program end (b) an average 3-year delay in 
deforestation (treatment effects undone over 4 years) (c) average time from tree-cutting to CO2 emissions of 10 years, and (d) a monitoring rate of 2 spot checks per 
monitor per day. Row 2 modifies (a) to assume the treatment effects accumulate at the same rate in the final 0.5 year as was observed in the first 1.5 years. Row 3 
modifies (b) to assume a 1-year delay in deforestation (treatment effects undone the day the program ends). Row 4 modifies (b) to assume the averted deforestation 
and all subsequent deforestation are delayed by the 2-year duration of the program. Row 5 modifies (a) to assume a 2-year delay in only the averted deforestation 
during the intervention (treatment effects undone over 2 years). Row 6 and 7 modify (c) to shorten and lengthen the gap between tree-cutting and emissions. Row 
8 modifies (d) to assume 1 spot check per monitor per day. See section 6 for further discussion. 
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APPENDIX 
Data Appendix 
 
Household survey 
Endline respondents: In 53 cases, the endline respondent was a different member of the 
household than the baseline respondent. In 18 of these cases, the baseline respondent had died, 
in 3 cases he was too ill to participate, and in 22 cases he was temporarily or permanently away 
from the village. The remaining 10 cases are miscellaneous reasons. 
 
Remote sensing analysis 
Procurement of images: The QuickBird satellite is operated by DigitalGlobe. We contracted with 
an image reseller, Apollo Mapping, to task our images. 
 
Top-of-atmosphere reflectance: Calculations for top-of-atmosphere reflectance, which accounts 
for factors such as solar zenith angle and Earth-Sun distance at acquisition time, were done 
following DigitalGlobe's “Radiance Conversion of QuickBird Data” technical documentation. 
 
Variable construction 
IHS transformation: The inverse hyperbolic sine transformation is the function 
𝑓𝑓(𝑥𝑥) = 𝐼𝐼𝛾𝛾 (𝑥𝑥 + �𝑥𝑥2 + 1). : Except for values of 𝑥𝑥  close to 0, it approximates 𝐼𝐼𝛾𝛾(𝑥𝑥)  +  𝐼𝐼𝛾𝛾(2) : 
Before transforming the QuickBird variables with the IHS function, we rescale the variables in 
levels such that the 10th percentile of the baseline value using actual-sized circles is 1. We apply 
the same procedure to the Landsat variables, forest area, and baseline per capita income. For 
baseline per capita income, the raw 10th percentile is 2500 UGX, and we use the same scale 
factor for all other monetary values before applying the IHS transformation. The results are 
insensitive to the scale factors used. 
 
Food, non-food, and alcohol/tobacco expenditures: The categories for food were as follows: tea; 
soda; milk; sugar; meat; fish; rice; beans; salt; snacks and meals consumed outside home; other 
foods. the categories for non-food were as follows: petrol and diesel; paraffin; body soap; clothing 
soap; other cosmetics, combs, razors; transport (excluding petrol and diesel); air time and use of 
public phones; domestic assistant or farm help; funeral expenses; shoes and sandals; clothing 
and bedding (not including school uniforms); livestock care (medicine, food, enclosures); school 
fees (not including uniforms and supplies); school supplies; bride price expenses; religious tithes. 
 
Distance to forest reserves: Distance to forest reserves is the shortest distance between the 
PFO's home and the boundaries of government forest reserves. 
 
Number of treatment villages within 5 kilometers: For calculating the number of villages near 
village A, any other village is considered within 5 km if any portion of its polygon is within 5 km 
distance of village A's centroid. 
 
Cost-benefit calculation  
Tons of carbon per hectare: Global Forest Watch uses Landsat data to estimate the biomass in 
forests globally at a resolution of 30 meters. The most recent data at this resolution are from 2000. 
We calculate the average carbon per hectare in forests with at least 67% forest cover within our 
study village boundaries. The value is 307 tons of above-ground biomass per hectare, and we 
apply the standard factor of 0.5 to obtain tons of carbon per hectare. 
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Appendix Figure A1: Reasons for not taking up the program 
 
 

 
                            2.5%   

  6.7%   
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                                             9.9% 
  
     
 
                                          4.1% 
                                                     
                         

67.5% 
         
             
 
 
 
 
 
 
 

  
Unaware of program or what it is 

 
Fear land grabs/distrust NGOs 

 
    
      
  Didn’t know how to sign up  Want to cut trees/low payment  
      
  Deemed ineligible by CSWCT  Contract too complicated  
  

Other 
   

     
      

 
Notes: This figure is based on responses to questions asked on the endline survey to non-enrollee PFOs in treatment 
villages. PFOs were asked if they were aware of the program. Those who were aware but said they did not enroll were 
asked their reason for not enrolling. 
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Appendix Figure A2: Proportion of PFO's land with valid remote sensing data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The figure shows a histogram of the proportion of sample PFOs' land that has available satellite data. PFO land 
is proxied by a circle twice as large as his self-reported land area. The main source of missing data is cloud cover. Area 
outside the study villages is also missing remote sensing data. 
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Appendix Table A1: Sample attrition 
 
 Number of PFOs   

 
Treatment 

group 
Control 
group Total   

Baseline survey (with GPS location of PFO home) 564 535 1,099   

Baseline survey and satellite land circle 508 487 995   

     HH reports owning no land 2 3 5   

     Didn't report land area 0 1 1   

     Entire land circle has cloud cover 54 44 98   

Baseline survey and endline survey 512 508 1,020   

Baseline survey, satellite land circle, and endline survey 463 464 927   
 
 
Notes: The top row represents our full sample and the following rows state the number of PFOs with available endline 
and satellite data (broken down by reason for missing satellite data). 
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Appendix Table A2: Determinants of sample attrition 
 

 
All PFOs 

PFOs with 
missing 
satellite 

data 

PFOs with 
missing 

endline data 
Std. diff (1-

2) 
Std. diff (1-

2) 
Std. diff 

(1-3)  
(1) (2) (3) (4) (5) (6)  

Household head's age 47.543 47.500 44.671 0.035 -0.070 0.207*  
 [14.122] [13.555] [14.772]     
Household head's years of education 7.820 8.330 7.385 -0.147 -0.270** 0.119  
 [4.093] [4.223] [3.845]     
IHS of self-reported land area (ha) 4.034 3.543 3.804 0.540***  0.253*  
 [0.996] [1.348] [1.165]     
Self-reported forest area (ha) 1.893 1.213 1.197 0.072* -0.088 0.078**  
 [8.978] [2.500] [1.450]     
Cut any trees in the last 3 years 0.851 0.760 0.772 0.273** 0.165 0.271**  
 [0.356] [0.429] [0.422]     
Cut trees to clear land for cultivation 0.238 0.231 0.152 0.022 0.018 0.199*  
 [0.426] [0.423] [0.361]     
Cut trees for timber products 0.712 0.596 0.696 0.254** 0.165 0.088  
 [0.453] [0.493] [0.463]     
Cut trees for emergency/lumpy expenses 0.270 0.212 0.316 0.136 0.082 -0.047  
 [0.444] [0.410] [0.468]     
IHS of total revenue from cut trees 1.315 1.030 1.086 0.094 -0.010 0.135  
 [2.183] [2.176] [1.992]     
Rented any part of land 0.180 0.096 0.139 0.257*** 0.132 0.082  
 [0.384] [0.296] [0.348]     
Dispute with neighbor about land 0.212 0.173 0.266 0.118 0.081 -0.148  
 [0.409] [0.380] [0.445]     
Involved in any environmental program 0.106 0.071 0.013 0.148* 0.103 0.335***  
 [0.307] [0.259] [0.114]     
Agree: Deforestation affects the community 0.544 0.531 0.434 0.045 0.068 0.246**  
 [0.498] [0.502] [0.499]     
Agree: Need to damage envi. to improve life 0.054 0.071 0.065 -0.071 -0.077 -0.088  
 [0.226] [0.258] [0.248]     
Treated 0.513 0.538 0.658 -0.072 -0.098 -0.324***  
 [0.500] [0.501] [0.477]     
Take-up 0.319 0.250 0.154 0.171 0.124 0.306*  
 [0.467] [0.437] [0.364]     
Tree cover in land circle (ha) 4.105  3.070   0.121*  
 [10.978]  [3.901]     
% of land circle with tree cover 0.204  0.211   -0.004  
 [0.159]  [0.150]     
% change in vegetation, 1990-2010 0.036  0.027   0.153  
 [0.062]  [0.060]     
Observations 1,099 104 79     
 
Notes: The table reports subsample means with standard deviations in brackets. Column 4 reports the regression-
adjusted difference in mean between the full sample and the observations with missing satellite data divided by the 
pooled standard deviation. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. The standardized difference 
and p-value are based on a regression with subcounty fixed effects, with clustering at the village level. Column 5 is the 
regression-adjusted standardized difference when IHS of land area is included as a control variable. IHS denotes the 
inverse hyperbolic sine transformation of the variable. Column 6 reports the regression-adjusted standardized 
difference between the full sample and the observations with missing endline data. Summary statistics for Take-up are 
based on the treatment group only. 
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Appendix Table A3: Determinants of program take-up in treatment group 
 

 
Take-up Take-up 

Change in 
tree cover Take-up  

(1) (2) (3) (4)  
Household head's age 0.002  0.003   
 [0.001]  [0.003]   

Household head's years of education 0.004  0.001   
 [0.005]  [0.014]   
IHS of self-reported land area (ha) 0.055* 0.059** -0.318**   
 [0.028] [0.024] [0.135]   

Self-reported forest area (ha) -0.004  -0.073   
 [0.006]  [0.054]   

Cut any trees in the last 3 years 0.036  0.038   
 [0.094]  [0.163]   

Cut trees to clear land for cultivation 0.028  0.046   
 [0.057]  [0.140]   

Cut trees for timber products 0.090  0.049   
 [0.076]  [0.178]   

Cut trees for emergency/lumpy expenses -0.129*** -0.099** -0.340*   
 [0.041] [0.040] [0.195]   

IHS of total revenue from cut trees -0.010  -0.049   
 [0.010]  [0.029]   

Rented any part of land -0.046  0.004   
 [0.067]  [0.175]   

Dispute with neighbor about land 0.051  -0.063   
 [0.045]  [0.109]   

Involved in any environmental program -0.014  0.216*   
 [0.079]  [0.125]   

Agree: Deforestation affects the community 0.032  -0.037   
 [0.039]  [0.086]   

Agree: Need to damage envi. to improve life -0.239*** -0.200*** -0.403   
 [0.075] [0.068] [0.346]   
Tree cover in land circle (ha) -0.003** -0.003**    
 [0.001] [0.001]    
% change in vegetation, 1990-2010 0.285  1.787**   
 [0.348]  [0.886]   
Predicted change in tree cover    -0.024  
    [0.034]  

Sample 
Treatment 

group 
Treatment 

group 
Control 
group 

Treatment 
group  

Observations 564 564 486 564  
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All 
columns include subcounty fixed effects, and the first three columns include the four village-level baseline variables 
used to balance the randomization. Missing independent variables have been imputed with the sample mean, and a 
dummy variable for missing values is included in the regression. IHS denotes the inverse hyperbolic sine function. 
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Appendix Table A4: Program impacts on tree-planting 
 

 

Took up 
reforestation 

option 
Reforestation 

area 
Total trees 

planted 
Total trees 
survived 

Have planted 
trees in the 

past 12 mths  
 (1) (2) (3) (4) (5)  

Treated 0.149*** 0.101*** 31.007*** 9.813*** 0.168***  
 [0.018] [0.016] [3.556] [1.555] [0.040]  
Lee bound (lower)     0.156***  
     [0.041]  

Lee bound (upper)     0.198***  
     [0.040]  
       

Control group mean 0.002 0.001 1.710 0.933 0.282  
Control group SD [0.043] [0.022] [25.339] [16.534] [0.450]  
Observations 1,099 1,099 1,099 1,099 1,019  
Observations (Lee bounds)     998  
       
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All 
columns include subcounty fixed effects and the four village-level baseline variables used to balance the randomization. 
The outcome in columns 1 to 4 are from CSWCT administrative data on program participation. Reforestation area is 
measured in hectares. The outcome in column 5 is from the endline survey. 



50 
 

Appendix Table A5: Proportional treatment effects on forest cover 
 
  PFO-level land circles  Village boundaries  
           

 
IHS of tree 

cover 
IHS of tree 

cover 

Change in 
IHS of tree 

cover  
IHS of tree 

cover 

Change in 
IHS of tree 

cover   
 (1) (2) (3)  (4) (5)  

Treated 0.038 0.044* 0.044*  0.042* 0.043*  
 [0.024] [0.023] [0.023]  [0.022] [0.022]   

Baseline outcome  0.982*** 0.940***    0.947***    
 [0.006] [0.015]   [0.033]    
         

Control group mean 2.866 2.866 -0.073  6.936 -0.095   
Control variables  No Yes Yes  Yes Yes  
Observations 995 995 995  121 121   
           
 
Notes: Standard errors are clustered by village in columns 1 to 3 and are heteroskedasticity-robust in columns 4 and 
5. Asterisks denote significance: * p <.10, ** p <.05, *** p <.01. All regressions and means are weighted by the proportion 
of available satellite data. IHS denotes inverse hyperbolic sine. The outcome is the IHS transformation of tree cover. 
All columns include subcounty fixed effects and the four village-level baseline variables used to balance the 
randomization. The control variables included in columns 2 to 5 are the 1990 and 2010 area covered by photosynthetic 
vegetation and dummy variables for the date of the baseline satellite image. The first 3 columns use a land circle 
centered on the PFO's home that is twice his self-reported land area, and the next 2 columns use village boundaries. 
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Appendix Table A6: Unweighted forest cover results 
 
 PFO-level land circles  Village boundaries 
 Tree cover 

(ha) 
Tree cover 

(ha) 
Change in 
tree cover 

 Tree cover 
(ha) 

Change in 
tree cover   

 (1) (2) (3) (4) (5) 

Treated 0.183* 0.213** 0.215** 4.519 4.901* 
 [0.099] [0.095] [0.098] [2.881] [2.789] 

Baseline outcome 1.004*** 1.007***   0.953***  
 [0.034] [0.067]  [0.025]  
      

Control group mean 3.526 3.526 -0.319 146.906 -12.273 
Control variables No Yes Yes  Yes Yes 
Observations 995 995 995 121 121 
       
 
Notes: Standard errors are clustered by village in columns 1 to 3 and are heteroskedasticity-robust in columns 4 and 
5. Asterisks denote significance: * p <.10, ** p <.05, *** p <.01. Tree cover is measured in hectares. All columns include 
subcounty fixed effects and the four village-level baseline variables used to balance the randomization. The control 
variables included in columns 2 to 5 are the 1990 and 2010 area covered by photosynthetic vegetation and dummy 
variables for the date of the baseline satellite image. The first 3 columns use a land circle centered on the PFO's home 
that is twice his self-reported land area, and the next 2 columns use village boundaries. 
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Appendix Table A7: Forest cover results removing outliers 
 

 
PFO-level land circles 

(dropping top 1%)  
PFO-level land circles 

(median-sized) 
 Tree cover 

(ha) 
Tree cover 

(ha) 
Change in 
tree cover 

 Tree cover 
(ha) 

Tree cover 
(ha) 

Change in 
tree cover   

 (1) (2) (3)   (4) (5) (6) 
        

Treated 0.196** 0.206** 0.240**   0.115** 0.138*** 0.147** 
 [0.088] [0.081] [0.097]   [0.052] [0.051] [0.056] 

Baseline outcome 0.898*** 0.833***     0.898*** 0.877***  
 [0.026] [0.042]    [0.027] [0.028]  
       

Control group mean 3.239 3.239 -0.336   2.112 2.112 -0.209 
Control variables No Yes Yes  No Yes Yes 
Observations 986 986 986   1,002 1,002 1,002 
        
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All regressions and means are weighted by the 
proportion of available satellite data. All columns include subcounty fixed effects and the four village-level baseline variables used to balance the randomization. The 
control variables included in columns 2, 3, 5, and 6 are the 1990 and 2010 area covered by photosynthetic vegetation and dummy variables for the date of the 
baseline satellite image. The first 3 columns omit the top 1% of observations based on baseline tree cover. The next 3 columns use land circles that are equal-sized 
for all PFOs; the size is twice the sample median self-reported land size. 
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Appendix Table A8: Forest cover results with different-sized land circles 
 
 PFO-level land circles (x1)  PFO-level land circles (x3)  
         
 Tree cover 

(ha) 
Tree cover 

(ha) 
Change in 
tree cover 

 Tree cover 
(ha) 

Tree cover 
(ha) 

Change in 
tree cover 

 
   
 (1) (2) (3) (4) (5) (6)  
         

Treated 0.140** 0.155** 0.155**  0.330** 0.363*** 0.357***  
 [0.067] [0.066] [0.065] [0.139] [0.134] [0.136]  

Baseline outcome 1.021*** 1.013***   0.962*** 0.971***   
 [0.062] [0.094]  [0.017] [0.042]   
        

Control group mean 1.758 1.758 -0.173 5.618 5.618 -0.539  
Control variables No Yes Yes  No Yes Yes  
Observations 973 973 973 1,008 1,008 1,008  
         
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p <.10, ** p <.05, *** p <.01. All regressions and means are weighted by the proportion 
of available satellite data. All columns include subcounty fixed effects and the four village-level baseline variables used to balance the randomization. The control 
variables included in columns 2, 3, 5, and 6 are the 1990 and 2010 area covered by photosynthetic vegetation and dummy variables for the date of the baseline 
satellite image. The first 3 columns use land circles with an area equal to the PFO's self-reported land area. The next 3 columns use a land circle with an area equal 
to 3 times the PFO's self-reported land area. 



54 
 

Appendix Table A9: Forest cover results in subsample with baseline satellite data collected prior 
to randomization 

 
 PFO-level land circles  Village boundaries  
 Tree cover 

(ha) 
Tree cover 

(ha) 
Change in 
tree cover 

 Tree cover 
(ha) 

Change in 
tree cover 

 
   
 (1) (2) (3) (4) (5)  

Treated 0.300** 0.407*** 0.406**  7.959*** 8.162***  
 [0.144] [0.143] [0.154] [2.838] [2.729]  

Baseline outcome 0.944*** 0.833***   0.979***   
 [0.032] [0.061]  [0.024]   
       

Control group mean 4.095 4.095 -0.459 172.841 -16.576  
Control variables No Yes Yes  Yes Yes  
Observations 580 580 580 78 78  
        
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p <.10, ** p <.05, *** p <.01. All 
regressions and means are weighted by the proportion of available satellite data. All columns include subcounty fixed 
effects and the four village-level baseline variables used to balance the randomization. The control variables included 
in columns 2 to 5 are the 1990 and 2010 area covered by photosynthetic vegetation and dummy variables for the date 
of the baseline satellite image. The sample is restricted to observations for which the baseline satellite image was 
collected prior to the subcounty lottery. 
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Appendix Table A10: Testing for spillover effects and anticipation effects 
 

 
Tree 
cover 

Tree 
cover 

Tree 
cover 

Get visits 
from 

timber 
dealers 

Increase 
in timber 
dealer 

visits last 
2 years 

Tree 
cover 

Tree 
cover  

 (1) (2) (3) (4) (5) (6) (7)  

Treated 0.202 0.313***  0.020 -0.016    
 [0.241] [0.112]  [0.034] [0.025]    

Treat Distance to forest reserve 0.009        
 [0.035]        

Treat Contiguous to forest reserve  -0.338       
  [0.339]       

# of treatment villages within 5km   0.019      
   [0.039]      

Believes program likely to come to village      0.076   
      [0.075]   

Believes program ends in 2015 or later       -0.118  
       [0.112]  
         

Sample All All 
Control 
group All All  

Control 
group  

Treatment 
group   

Observations 995 995 487 1,020 1,020 487 508  
         
 
Notes: Standard errors are clustered by village. Asterisks denote significance: * p <.10, ** p <.05, *** p <.01. All columns include subcounty fixed effects and the four 
village-level baseline variables used to balance the randomization. In columns 1 to 3 and 6 and 7, regressions are weighted by the proportion of available satellite 
data, and the regressions include 1990 and 2010 Landsat photosynthetic vegetation, the baseline outcome, and dummy variables for the baseline satellite date. The 
outcomes in columns 4 and 5 are from the endline survey. Column 4 controls for the baseline outcome; the variable in column 5 was not collected at baseline. 
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