The effects of food systems interventions on food security and nutrition outcomes in low- and middle-income countries

January 2021

Evidence Gap Map Report 16

Health
About 3ie

The International Initiative for Impact Evaluation (3ie) promotes evidence-informed equitable, inclusive and sustainable development. We support the generation and effective use of high-quality evidence to inform decision-making and improve the lives of people living in poverty in low- and middle-income countries. We provide guidance and support to produce, synthesise and quality assure evidence of what works, for whom, how, why and at what cost.

3ie evidence gap map reports

3ie evidence gap maps are thematic collections of information about impact evaluations and systematic reviews that measure the effects of international development policies and programmes. The maps provide a visual display of completed and ongoing systematic reviews and impact evaluations in a sector or sub-sector, structured around a framework of interventions and outcomes.

The evidence gap map reports provide all the supporting documentation for the maps, including the background information for the theme of the map, the methods and results, the protocols, and the analysis of results.

About this evidence gap map report

This report presents the findings of a systematic search to identify and map the evidence base of impact evaluations and systematic reviews of interventions that assess the effects of food systems interventions on food security and nutrition outcomes. The content of this report is the sole responsibility of the authors and does not represent the opinions of 3ie, its donors or its board of commissioners. Any errors and omissions are also the sole responsibility of the authors. Please direct any comments or queries to Charlotte Lane at clane@3ieimpact.org.

Executive editor: Birte Snilstveit
Production manager: Anushruti Ganguly
Assistant production manager: Akarsh Gupta

© 2021 International Initiative for Impact Evaluation (3ie)
The effects of food systems interventions on food security and nutrition outcomes in low- and middle-income countries

Nick Moore
International Initiative for Impact Evaluation (3ie)

Charlotte Lane
3ie

Ingunn Storhaug
3ie

Amber Franich
3ie

Heike Rolker
Innovative Methods and Metrics for Agriculture and Nutrition Actions (IMMANA)

Josh Furgeson
3ie

Thalia Sparling
IMMANA

Birte Snilstveit
3ie

Evidence Gap Map Report 16
January 2021
Summary

Introduction

The International Initiative for Impact Evaluation (3ie) and Innovative Methods and Metrics for Agriculture and Nutrition Actions research group were commissioned by Deutsche Gesellschaft für Internationale Zusammenarbeit in February 2020 to undertake an evidence gap map (EGM) of the effects of food systems interventions on food security and nutrition outcomes.

This project aims to inform decision-making by making relevant evidence accessible to policymakers, researchers and the development community. This will be done by identifying and describing the available evidence in a clear and structured way. As such, this EGM has two specific objectives:

1. Identify and map the available evidence on the effects of food systems interventions on food security and nutrition outcomes in low- and middle-income countries (L&MICs); and
2. Identify potential primary and synthesis evidence gaps.

What is an EGM?

3ie evidence gap maps are thematic collections of information about impact evaluations and systematic reviews that measure the effects of international development policies and programmes. These maps provide a visual and interactive display of completed and ongoing systematic reviews and impact evaluations in a sector or sub-sector, structured around a framework of interventions and outcomes. EGMs highlight both absolute gaps (an empty cell in the framework), which could be filled with new primary studies, and synthesis gaps (multiple impact evaluations but no systematic reviews), which could be filled with evidence synthesis. This map can be found available online here.

Background

The triple burden of malnutrition refers to the concurrent presence of undernutrition, micronutrient deficiencies and excessive energy intake (i.e. overweight and obesity) in a given population. The presence of all three forms of malnutrition is increasingly seen as a prevailing global issue. Current estimates suggest that 690 million people, or just under 9 per cent of the global population, experience hunger. At the same time, worldwide obesity nearly tripled between 1975 and 2014, with over 1.9 billion adults classed as overweight in 2016, of whom 650 million were obese. The prevalence of this triple burden is also thought to be affected by constraints within food systems, which are often observed in L&MICs, and the complexity of food systems themselves.

In response to these continuing challenges, the number of interventions to support healthy nutrition and evaluations of these interventions has increased substantially in recent years. While efforts to coordinate policy and research in the sector exist, available funding to support intervention within the food system is not considered to be sufficient to address future malnutrition issues. By mapping out the existing systematic and impact evaluation evidence in this sector more clearly, this EGM aims to improve the accessibility of research and to support more efficient allocation of resources.
Methods

To generate this EGM, the standards and methods for EGMs developed by 3ie were followed (Snilstveit et al. 2016; 2017). The steps taken to create this map are summarised below.

Subject scope development: Relevant policy documents, identified together with Deutsche Gesellschaft für Internationale Zusammenarbeit, were reviewed. From these, several existing food systems frameworks were identified. A selected and adapted framework (HLPE 2017) was presented to a group of Deutsche Gesellschaft für Internationale Zusammenarbeit policy stakeholders for feedback. The final framework used to map studies is summarised below.

EGM scope summary

<table>
<thead>
<tr>
<th>Interventions</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food value chains</td>
<td>Food security & nutrition</td>
</tr>
</tbody>
</table>
| Production system | ▪ Anthropometric
| ▪ Distribution & storage | ▪ Developmental
| ▪ Processing & packaging | ▪ Micronutrient deficiencies
| ▪ Food loss & waste mngr. | ▪ Diet quality & adequacy
| Food environment | ▪ Food safety
| ▪ Availability and provision (proximity) | ▪ Food affordability & availability
| ▪ Affordability | ▪ Information / behaviour change
| ▪ Promotion and labelling | ▪ Efforts to improve women’s empowerment in food systems
| ▪ Quality & safety |

Source: 3ie 2020; adapted from HLPE 2017.
Note: The bi-directional arrows seek to highlight that intervening in one stage of the food system may have implications for activities at another stage.

Specification of eligibility criteria: A population, intervention, comparator, outcome and study design framework was adopted. Topically relevant systematic reviews and experimental – as well as a subset of quasi-experimental – quantitative impact evaluations were included. The time period considered studies published in or after 2000.

Search, screening and data collection: Twelve academic bibliographic databases were screened systematically in May 2020 using the criteria above. This was complemented with manual searches of 31 sector-specific databases and websites, also engaging with the research community. Studies were screened against set eligibility criteria. All included studies were checked to make sure they were not linked to other included studies, and coded using a pre-specified coding framework to collect study characteristics. All systematic reviews were appraised for the quality of methods used to search for and synthesise study effects. After implementing quality assurance processes, descriptive statistics were calculated on the data collected to answer respective research questions.
Results

Research question 1: What are the extent and characteristics of existing empirical evidence regarding the effects of selected food systems interventions on food security and nutrition outcomes in L&MICs?

Size of the evidence base: A total of 1,838 impact evaluations and 178 systematic reviews were identified. The volume of publications has increased more than a hundredfold since 2000, mostly due to increases in research into food supply chains and consumer behaviour.

Population coverage: Most impact evaluations were conducted in lower middle-income countries, particularly in Sub-Saharan Africa and South Asia. Impact evaluations were conducted in most fragile states. Interventions evaluated in fragile states are somewhat similar to those in all L&MICs. Impact evaluations primarily targeted both sexes and people of diverse ages, except those over 60. Over half of interventions were conducted in rural areas, and most of those evaluated were local in scale, with administration most commonly performed at the household level.

Intervention coverage: All interventions with at least 50 impact evaluations have been synthesised by at least one systematic review. The most common intervention categories, each with over 100 impact evaluations and typically at least 20 systematic reviews, were: the provision of supplements, fortification, classes in the consumer behaviour domain, direct provision of foods, and peer support and counselling in the consumer behaviour domain. Several studies evaluated programmes that combined multiple food systems interventions.

Outcome coverage: The most common final outcomes evaluated in studies were categorised as anthropometric, micronutrient status, and diet quality and adequacy. The most common intermediate outcome categories were economic, agricultural and intrinsic motivational outcomes. In particular, the most common final impact evaluation outcomes were linear growth, iron status, weight and relative weight; the most common intermediate outcomes were behaviour change, knowledge, income and plant production. Most studies evaluated only final outcomes, but over time, studies have increasingly considered intermediate outcomes.

Study design coverage: Roughly three quarters of impact evaluations implemented randomised designs, and few triangulated effects with qualitative or cost analysis. Meta-analysis was the most common synthesis method, and most systematic reviews sought to understand how effects might vary between different groups.

Systematic review confidence rating: Most reviews were of low confidence with regard to their conclusions: 95 of completed reviews scored a ‘low’ confidence rating (54%); 46 (26%) were rated ‘medium’ confidence; and 34 (19%) were rated ‘high’ confidence. High-confidence reviews were mostly published in or after 2015 and are focused on synthesising the available evidence on the effects of supplementation and fortification interventions.
Research questions 2 and 3: What are the major primary and synthesis evidence gaps in the literature that could be prioritised for primary research and/or evidence synthesis?

Below is a partial list of interventions and outcomes that were identified as understudied, which may be of interest to stakeholders when considering the allocation of research and programming resources.

Illustrative list of interventions to prioritise for evaluation

- Government manipulations of price
- Advertising and labelling regulations
- On-farm, post-harvest processing
- Interventions to support food packaging
- Efforts to support women’s empowerment within the food system
- Innovative store design
- Cold chain storage

Illustrative list of outcomes to prioritise for evaluation

- Women’s empowerment
- Economic, social and political stability
- Food loss
- Environmental impacts of the food system
- Measures of diet insufficiency

Illustrative list of evidence synthesis priorities

- Agricultural extension and information-sharing activities within the food value chain
- Provision of free or reduced-cost farm inputs to crop production
- Educational approaches within the food value chain
- Agricultural insurance products
- Outcomes related to other diet quality and adequacy measures

Implications

It was found that the number of systematic reviews and impact evaluations in the sector has substantially increased in the last two decades. The mapping identified several well-researched areas but also areas that are potentially not well researched. Based on the results of the mapping project, findings from the EGM suggest the following implications for policy and research:

Policy

Use high-quality systematic review evidence: Make use of existing high-quality systematic reviews if their focus is relevant to your area of focus.

Allocation of resources: Consider allocating resources to fund studies in the identified areas that are potentially under-researched. Exercising caution prior to programme implementation is recommended in areas where no studies were found, such as those related to labelling and advertising regulations. Contextualise any resource allocation made using this map with the following information sources:
• Existing or planned research and interventions by government agencies and development partners;
• Other forms of evidence, including implementation research, process evaluations, qualitative studies, and programming administrative and monitoring information;
• Existing theories of change and logical frameworks; and
• Your own formative work and local knowledge.

Research

Building on well-researched areas: Well-researched areas may benefit from additional research if questions become more focused on specific contexts or populations, or the efficacy of implementation procedures.

Standardising diet outcome indicators: To aid comparison and improve evidence synthesis efforts, consider standardising outcome measures relating to diet quality and adequacy, as multiple used measures were identified by the authors.

Incorporating mixed methods and cost data: Few studies were based on mixed methods or collected and analysed cost data. Future studies could provide new insights by incorporating these methods.

Dealing with complexity: Studies and reviews should consider the complexity of food systems as far as is feasible. In the case of impact evaluations, this might mean considering quasi-experimental designs where randomised evaluations are not possible. More generally, a good starting point would be to consider how different drivers that affect the food system (as defined in HLPE 2017) might influence an intervention or population of interest.
Lists of figures and tables

Figure 1: EGM scope summary ... 7
Figure 2: Overview of search and screening process .. 13
Figure 3: Cumulative distribution of included studies by publication year .. 14
Figure 4: Proportion of intervention domains evaluated in impact evaluations over time 15
Figure 5: Distribution of included studies by intervention domain and subdomain 16
Figure 6: Outcome category frequency by outcome type ... 18
Figure 7: Top 10 outcomes measured in impact evaluations, by outcome type 20
Figure 8: Disaggregation of outcomes by intermediate and final categories and publication year .. 22
Figure 9: Distribution of included studies by country ... 24
Figure 10: Distribution of impact evaluations by age and reproductive cycle targeting 26
Figure 11: Distribution of studies by scale of implementation and study setting 27
Figure 12: Programme funder and research funder categories for impact evaluations 28
Figure 13: Overview of systematic review critical appraisal results by key subdomains 31

Table 1: EGM research questions ... 1
Table 2: PICOS summary of criteria for the inclusion and exclusion of studies 8
Table 3: Study characteristics for EGM filtering ... 11
Table 4: Most commonly evaluated multiple-component food systems interventions 17
Table 5: Least-common outcomes evaluated by impact evaluations in the evidence base 21
Table 6: Overview of countries with the most impact evaluations by region 23
Table 7: Top 10 programme funders of impact evaluations .. 29
Table 8: Top 10 research funders .. 29
Table 9: Overview of the type of costs and cost analysis presented in impact evaluations 30
Table 10: High-level summary of the evidence mapping of impact evaluations 33
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM</td>
<td>Evidence gap map</td>
</tr>
<tr>
<td>L&MICs</td>
<td>Low- and middle-income countries</td>
</tr>
<tr>
<td>PICOS</td>
<td>Population, intervention, comparator, outcome and study design</td>
</tr>
</tbody>
</table>
1. Introduction

The International Initiative for Impact Evaluation (3ie) and the Innovative Methods and Metrics for Agriculture and Nutrition Actions research group were commissioned by Deutsche Gesellschaft für Internationale Zusammenarbeit in February 2020 to undertake an evidence gap map (EGM) of the effects of food systems interventions on food security and nutrition outcomes. This EGM report presents the findings of a systematic search to identify and map the evidence base of impact evaluations and systematic reviews of food systems interventions that aim to improve food security and nutrition outcomes.

1.1 Study aim, objectives and research questions

By identifying, describing and summarising the available evidence in a clear and structured way, this project aims to make evidence accessible to policymakers, researchers and the development community. Ultimately, this map also seeks to facilitate the use of evidence to inform policy decisions. To meet these aims, the EGM has two specific objectives:

1. To identify, describe and summarise evidence on the effects of food systems interventions on food security and nutrition outcomes in L&MICs; and
2. To identify potential primary and synthesis evidence gaps.

The research questions shown in Table 1 sought to address these objectives.

Table 1: EGM research questions

<table>
<thead>
<tr>
<th>No.</th>
<th>Research question</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ1</td>
<td>What are the extent and characteristics of existing empirical evidence regarding the effects of food systems interventions on food security and nutrition outcomes in L&MICs?</td>
<td>Coverage</td>
</tr>
<tr>
<td>RQ2</td>
<td>What are the primary and synthesis evidence gaps in the literature?</td>
<td>Gaps</td>
</tr>
<tr>
<td>RQ3</td>
<td>What intervention and/or outcome areas could be prioritised for primary research and/or evidence synthesis?</td>
<td>Research needs</td>
</tr>
</tbody>
</table>

1.2 What is an EGM and how is it used?

An EGM aims to establish what is known and unknown about an evidence base in a thematic area (Sniltstveit et al. 2016). A map is populated by systematically searching and screening all relevant completed and ongoing systematic reviews and impact evaluations against a set of pre-specified inclusion and exclusion criteria. All studies that met these criteria are mapped onto a framework of interventions and outcomes and presented on an interactive platform, which provides a graphical display of the evidence in a grid-like framework.

This presentation displays the volume of evidence for all intervention-outcome combinations, the type of evidence (impact evaluation, systematic review, completed or ongoing), and a confidence rating of each systematic review. The final map is published on an online interactive platform that provides additional filters so that users can further explore the available evidence (e.g. by global region, income levels or population).
EGMs highlight both absolute gaps (an empty cell in the framework), which could be filled with new impact evaluations, and synthesis gaps (multiple impact evaluations but no systematic reviews), which could be filled with evidence synthesis. They can also be used to highlight potentially over-researched areas, where the effects of a particular intervention have been evaluated against a range of outcomes (or vice versa), and where additional studies may not be as necessary.

However, just because an EGM identifies a gap, it does not necessarily mean this gap is meaningful. Apparent gaps can occur for several reasons, including:

- **Well-established effects**: The impact (or lack thereof) may have been well established before the search period. In such a case, there is no need for subsequent studies investigating already established impacts.

- **Limited underlying theory**: There may be no theoretical reason to expect the intervention to affect the outcome. Investigating these areas might lead to incorrect conclusions due to the potential for spurious correlations.

- **Methodological and practical limitations**: It may be difficult to conduct impact evaluations on a given intervention. There may be other sources of information, such as qualitative work or process evaluations, that consider the topic of impact without fulfilling the inclusion criteria for this map. Studies may also have been conducted but not published (e.g. because no significant effects were found).

- **Studies not captured within this EGM**: Although a comprehensive search was undertaken, it is possible that some impact evaluations are not included in this EGM due to language or date restrictions, lack of identification through the search approach, or other potential oversights.

- **Existence of meaningful knowledge gaps**: Finally, there may be meaningful knowledge gaps that represent opportunities for future research. These gaps can be especially concerning when an intervention has been widely implemented without sufficient evidence, under the assumption that it will affect an outcome or set of outcomes.

Ultimately, EGMs are envisioned as a global public good, and this allows them to be used as tools to facilitate access to high-quality research to inform development policy decision-making. Several examples of how this EGM could be used to inform decision-making are provided in Appendix G.

1.3 Remainder of this report

The remainder of this report is presented as follows:

- **Section 2** presents the subject background.
- **Section 3** presents the scope and method.
- **Section 4** presents the results.
- **Section 5** concludes and provides a set of considerations for using the EGM.
2. Background and rationale

2.1 The problem, condition or issue

2.1.1 The triple burden of malnutrition is a prevailing global issue.

The triple burden of malnutrition refers to the concurrent presence of undernutrition, micronutrient deficiencies and excessive energy intake (i.e. overweight and obesity) in a given population (UNICEF 2019). Past data and the latest current data show that different forms of malnutrition persist globally.

Current estimates indicate that 690 million people, or just under 9 per cent of the global population, experience hunger (FAO 2020) and 2 billion people lack key vitamins and minerals in their diets (Scott 2017). Micronutrient deficiencies are worse amongst children, with one half of all children currently thought to be suffering from at least one form of deficiency (UNICEF 2019). Less than one fifth of all children aged 6–23 months in UN-designated least-developed countries were also reported to receive a minimally acceptable diet (ibid).1

Finally, just over one fifth of the world’s children under age 5 were stunted in 2019 (UNICEF 2020). In 2011, undernutrition and micronutrient deficiencies contributed to 45 per cent of all childhood deaths (Black et al. 2013). Although the prevalence of hunger had been steadily declining, this trend reversed in 2015, taking us further from the SDG 2 goal of ending hunger by 2030 (FAO 2019).

At the same time, worldwide obesity nearly tripled between 1975 and 2014, with over 1.9 billion adults classed as overweight in 2016, of whom 650 million were obese (NCD RisC 2017; WHO 2020). The proportion of overweight children aged 5–19 years doubled from 10 per cent in 2000 to 20 per cent in 2016 (UNICEF 2019). Obesity was estimated to have contributed an additional four million deaths each year between 1980 and 2015 (GBD 2015 Obesity Collaborators 2017), and unhealthy diets now represent a greater contributor to mortality and morbidity than unsafe sex, alcohol, drugs, and tobacco combined (Haddad et al. 2016; Willett et al. 2019).

2.1.2 Malnutrition can occur due to food system malfunction, particularly in L&MICs.

These issues are acute in L&MICs, where the prevalence of the triple burden of malnutrition is highest, especially in fragile states (Development Initiatives 2020). In particular, undernutrition and micronutrient deficiencies are increasingly coupled with the problems associated with obesity (Popkin et al. 2020) – primarily diet-related cardiovascular diseases (Danaei et al. 2014).

The transition of food systems towards ‘Western’ diets, often associated with increased sedentary lifestyles, is thought to be a key driver of the triple burden of malnutrition (Haddad et al. 2016). Researchers have attributed this nutrition transition to a number of interlinked factors, including increased globalisation, per-capita income growth and

1 Least-developed countries or areas are classified as such by the United Nations High Representative for the Least Developed Countries, Landlocked Developing Countries and Small Island Developing States. More information is available at: https://data.unicef.org/regionalclassifications [Accessed: 10 November 2020].
changes to food environments – for example, growth in the so-called ‘retail revolution’ or increased access and promotion of ultra-processed foods (Popkin et al. 2020).

These changes have made foods with low nutrient density and high caloric density more accessible, affordable and ultimately more desirable to end consumers (ibid). In contrast, healthy and culturally appropriate diets are often more expensive (Darmon and Drewnowski 2015; Dizon and Herforth 2018) and less accessible, especially in low-income and rural contexts (Development Initiative 2020). This can result in serious socio-economic disparities in diet and, as a consequence, diet-related non-communicable diseases (Darmon and Drewnowski 2015).

2.1.3 **Efforts to improve food systems must also consider other ongoing challenges due to the interconnectedness of these systems.**

The challenges of our era – such as climate change, economic growth, urbanisation, globalisation and scarce natural resources – continue to put food systems under stress (Haddad et al. 2016; Willett et al. 2019). To meet growing demand, it is thought that food production needs to increase by 50 per cent before 2050 (FAO 2017), but that markets and existing food systems will not be able to support the needs of a growing population without inducing severe, irreversible environmental damage (UNEP 2019; Springmann 2018; UNSCN 2019).

The same dietary alterations that produce more sustainable food systems can also lead to healthier lives, potentially preventing 10.8 to 11.6 million deaths a year (Willett et al. 2019). These changes include a reduction of meat and processed food consumption with a corresponding increase in the consumption of fruits and vegetables. Food systems also need to be designed to be robust to climatic shocks (Myers et al. 2017). The concurrent and interconnected challenges of the triple burden of malnutrition and climate change described above have been referred to as the Global Syndemic (Swinburn et al. 2019).

2.2 **Policy responses**

2.2.1 **Development policy is broadening its focus to consider the multiple aspects of food systems.**

In response to these challenges, the international community has refocused efforts to tackle malnutrition in recent years, with the number of interventions implemented and studied increasing substantially and taking place in multiple stages of the food system. Governments are increasing their spending on nutrition-sensitive interventions and developing nutrition targets (Development Initiatives 2020). Diverse new regulations have been implemented regarding the labelling and marketing of food in many countries (Zhang et al. 2014).

Furthermore, behaviour change programmes have expanded drastically in recent years (Section 4). These include education and social support efforts for infant- and young child-feeding; healthy, culturally appropriate food options; and meal planning. Although nutrition-specific interventions have immediate effects on child malnutrition, the effects of these nutrition-sensitive programmes may be longer term and more sustainable (Khalid et al. 2019).

2 For example, see Ruel et al. 2018; USAID 2019; Majamanda et al. 2014; or Fiorella et al. 2019.
2.2.2 Efforts to coordinate policy and research in the sector exist, but recent increases in funding are not sufficient to address future malnutrition issues.

Several initiatives aim to coordinate and inform efforts across different sectors and research. For example, the UN initiated the Scaling-up Nutrition Movement to stimulate an international recommitment to fighting hunger. Similarly, the Global Alliance for Improved Nutrition seeks to build alliances between governments, businesses and civil society to find and deliver solutions to end malnutrition. The EAT-Lancet Commission has developed scientific targets for achieving a healthy diet and sustainable food production by 2050. Another set of targets has been developed by the World Health Assembly with a specific goal of aligning these targets with the SDGs (WHO 2018). In addition, the High Level Panel of Experts on food security and nutrition facilitates policy debates and provides evidence-based advice at the request of the UN Committee on World Food Security.

Significant increases in funding have accompanied these new efforts. For example, funding for basic nutrition interventions increased from slightly under USD200 million in 2006 to over USD900 million in 2013 (World Bank 2017). Additionally, 8 of the top 10 donors supporting nutrition-specific interventions (as aligned with the World Health Assembly targets) increased their funding between 2015 and 2017 (R4D 2019). The most active donors are largely governmental (the UK, the US and the European Union), with some non-governmental organisations and foundations also donating significant amounts, such as the International Development Association and the Bill & Melinda Gates Foundation (R4D 2019).

Yet this increased level of funding is still less than the estimated resources needed (R4D 2019), with nutrition accounting for less than 1 per cent of the official development assistance budget globally in 2016 (Development Initiatives 2018). The result is also true for domestic spending, as available data suggest that spending on high-impact nutrition interventions is not at the required level, although limited data availability makes it challenging to fully assess domestic spending (Development Initiatives 2020).

Several attempts have been made to estimate the funding gap in the sector. For example, the Ceres2030 initiative suggests that between 2018 and 2030, donors need to contribute an additional USD14 billion per year, complemented with USD19 billion from L&MIC governments per year, to end hunger and double farmer incomes while curtailing greenhouse gas emissions (Laborde et al. 2020). In addition, the World Bank (2017) projected that if an additional USD70 billion was made available between 2015 and 2025, 65 million cases of stunting and 265 million cases of anaemia in women could be avoided.

2.3 Why is this EGM important?

The complexity of implementing food systems interventions in L&MIC settings and the considerable size and range of current research can hinder evidence-informed nutrition programmes and policies. This map seeks to increase evidence discoverability and use.

Food systems, environmental sustainability, health and nutrition are intrinsically linked, and food systems programming with nutrition-related aims can benefit from coordinated efforts across multiple sectors, including the food supply chain (Ruel et al. 2018). This
map reports on evidence from all key areas and intervention types within the food system to inform comprehensive policy.

The extensive literature examining the effects of food systems interventions on food security and nutrition in L&MICs can also overwhelm decision makers. As an example, preliminary searches of the 3ie Development Evidence Portal (used to inform the design of our project) suggested over 1,000 impact evaluations and 45 systematic reviews of potentially relevant interventions that were completed or ongoing since 2008. A recent review of nutrition-sensitive evidence also found that the body of evidence related to nutrition-sensitive agriculture increased in size since 2014 by 44 studies (Ruel et al. 2018).

There are existing systematic reviews and EGMs on topics related to food systems; for example, efforts to map existing metrics for measuring the functioning of food systems (Sparling et al. 2019), the sustainability of food systems (Béné et al. 2019), the state of food systems in certain countries (de Brauw et al. 2019), and the funding landscape (World Bank 2017). This study aims to build on these previous efforts by providing a comprehensive overview of all the available high-quality systematic review and impact evaluation evidence on the effects of food systems interventions on food security and nutrition outcomes since 2000.

Mapping the evidence from impact evaluations and systematic reviews across all sectors of the food system makes this research more accessible. In addition, this mapping can inform future research investments; for example by clearly identifying absolute gaps (no or very few impact evaluations) or synthesis gaps (clusters of impact evaluations and no high-quality systematic review) with respect to specific interventions and/or outcomes.

3. Scope and methods

3.1 Conceptual framework

The High Level Panel of Experts developed a framework to systematically map food systems (HLPE 2017), and in 2019 the International Food Policy Research Institute extended this framework to include additional feedback mechanisms (de Brauw et al. 2019). This extended framework was adopted as the conceptual basis of our efforts to map the evidence relating food systems to nutrition and food security.

The framework suggests three intervention domains within the food system: the food supply chain, the food environment and consumer behaviour. The domains reflect types of actions and interventions, not a sequential flow of activities leading to one another. The food supply chain is broken down into production activities, storage and distribution, processing and packaging, and food loss and waste management, as shown in Figure 1.

The food environment is the physical, economic, political and sociocultural surroundings, opportunities and conditions that create, prompt and shape dietary preferences and choices and nutritional status (Swinburn et al. 2014; Global Panel 2017). These include the availability, physical accessibility and provision of foods; affordability; promotion and labelling; and food quality and safety. Finally, consumer behaviour involves individual preferences related to consumption, food prices and income available for food (de Brauw et al. 2019). It includes prices, preferences, women's empowerment in the context of the food system, and information.
The framework outlines five main drivers of change in (global) food systems: biophysical and environmental; innovation, technology and infrastructure; political and economic; sociocultural; and demographics (HLPE 2017). These drivers work outside; however, they have significant impacts on food systems by altering food production and demand. The framework also considers outcomes related to food security and diet, and ultimate outcomes related to nutrition; health; and social, economic and environmental well-being.

Figure 1: EGM scope summary

Source: 3ie 2020; adapted from HLPE 2017.

Note: The bi-directional arrows seek to highlight that intervening at one stage in the food system may have implications for activities at another stage.

3.2 Criteria for including and excluding studies

When defining the scope of relevant interventions and outcomes, the aim was to be as comprehensive as possible whilst setting a feasible scope that was not too broad to be presented in a visually appealing and interpretable manner. Table 2 presents the detailed criteria for including and excluding studies according to the population, intervention, comparator, outcome and study design (PICOS) framework. In summary, it sought to identify systematic reviews of effectiveness and quantitative impact evaluations that assessed the effects of at least one food system intervention on food security and nutrition outcomes for any population based in an L&MIC.

An impact evaluation was defined as a study that uses rigorous methods to provide a quantitative estimate of the impact of an intervention. This is accomplished by constructing a counterfactual, which provides evidence about what would have happened in the absence of the intervention. In an impact evaluation, the outcomes of those who receive the intervention are compared with those of a comparison group that does not receive the intervention.

The comparison group may be a specific population in the study area that does not receive the treatment (as in a randomised controlled trial) or may be constructed by researchers (as in propensity score matching or interrupted time series). For an impact evaluation to be valid, there must be a sound statistical basis for claiming that the comparison group represents what would have happened to the treatment group had they not received the intervention.
A systematic review was defined as a synthesis of the research evidence on a particular topic (e.g. the effectiveness of water supply and sanitation) obtained through an exhaustive systematic literature search for all relevant studies using widely accepted scientific strategies to minimise error associated with appraising the design and results of studies.

3.3 Search strategy

A systematic search of 12 academic bibliographic databases was completed in May 2020 to identify qualifying studies. Additional studies identified before the end of September 2020 were also included. To address potential publication bias issues, the following data sources were used:

- **Other specialist databases and websites**: In total, 31 sector-specific databases and websites were searched. Basic search strings were used where search functionality was limited.
- **Backward citation tracking**: Citations for all included systematic reviews were reviewed for inclusion.
- **Communication with researchers**: Information about potential eligible studies up to the end of September 2020 were requested. This occurred through two main channels: (1) engaging with the project advisory and policy stakeholder groups; and (2) publishing a call for information via a related blog post on the 3ie website and promoting it using social media.

Table 2: PICOS summary of criteria for the inclusion and exclusion of studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
</table>
| **Population** | ▪ Programme participants that were located in a L&MIC in the first year of implementation\(^3\)
▪ Impact evaluations with at least one effect size for an L&MIC country population
▪ Studies focused on the prevention of clinical conditions | ▪ Studies focused on niche populations, such as athletes or the military
▪ Efficacy studies, unless they were completed in a sufficiently real-world setting
▪ Studies targeting participants with a clinical condition
▪ Studies focused on high-income country migrant populations in L&MICs and vice versa |
| **Intervention** | ▪ Interventions that directly intervene on an aspect of the food system within its three primary domains: the food supply chain, the food environment and consumer behaviour
▪ Studies evaluating multiple food systems interventions | ▪ Interventions not in the food system or interventions targeting drivers of the food system without an explicit food system focus
▪ Unconditional cash transfer programmes
▪ Interventions focused on the financing of a food systems intervention |

Comparisons	• Appropriate comparisons included: business as usual, an alternative treatment, no treatment or an early-versus-late comparison (where those that took part in earlier years are compared to those that took part in later years)	• Studies that did not justify and make use of an appropriate comparison group
Outcomes	• Final outcomes relating to anthropometry, physical and mental development outcomes, micronutrient status, diet quality and adequacy, food safety affordability and availability	• Health and non-food-system related education outcomes • Mortality and morbidity outcomes, unless a disease is directly linked to a specific micronutrient deficiency (e.g. anaemia or goitre)
Study design	• Effectiveness studies, based in real-world settings, employing one of the following methods: randomised controlled trials (where treatment assignment is random); and quasi-experimental designs (where treatment is assigned as if it were random; e.g. regression discontinuity design, instrumental variables, panel methods, difference-indifference, synthetic control groups, interrupted time series analysis and statistical matching) • Systematic effectiveness reviews, which employ recognised search and synthesis methods (Snilstveit et al. 2016)	• Before-after studies or cross-sectional studies that do not attempt to control for selection bias or confounding in any way • Case-control studies • Randomised block designs where farm field sections are the blocking unit • Willingness-to-pay and hypothetical experiment studies
Other	• Studies published in or after the year 2000 • Complete or ongoing studies (i.e. protocols are included) • Studies in any publication format	• Studies in any language other than English

Source: 3ie 2020.
Note: The cutoff at the year 2000 was made arbitrarily to make the volume of search results more manageable.
3.4 Screening

Screening of studies was managed using EPPI-Reviewer 4 software\(^4\) (Thomas et al. 2010) and was completed by implementing the following steps:

- **Prepare study records:** All output files of the implemented search strategy were imported into EPPI-Reviewer software. Studies that were identified through the additional means specified were added to the software manually. An automated process within the software was used to remove duplicate files.

- **Title and abstract screening:** The title and abstracts of all imported and de-duplicated studies were single screened. The screener assigned one code, which indicated that either the study should be included for full-text screening, that the study should be excluded or that they were unsure. If a study was excluded, the reviewer coded the rationale for exclusion. Where screeners had any difficulty in applying the eligibility criteria, a study was screened by a second reviewer, in what is known as a safety-first approach. Periodic meetings were also held to discuss and resolve screening decisions for studies that screeners had coded as ‘unsure’. EPPI-Reviewer 4 software’s machine learning capabilities were used to streamline the process and efficiently remove clearly irrelevant studies.

- **Full text screening:** The full text was retrieved for each study that met all the title and/or abstract inclusion criteria. Initially, two reviewers examined each full text in detail against the protocol and applied a code to indicate whether the study was included or why the study was excluded. Disagreements were reconciled periodically. From August 2020, full texts were single screened with safety first due to time constraints. Overall, 30 per cent of studies included at the title and abstract stage were double screened. This process identified a set of studies coded as meeting eligibility criteria.

- **Checks for linked publications:** Publications were linked where the analysis was based on data related to the same study population. This typically occurred when authors followed a group of participants over time, published multiple versions of the same study in different formats (e.g. a working paper later published as a journal article) or updated a systematic review. Descriptive information was only included once for each group of linked publications, so that each study was independent. This means that the presented analysis is reported at the study level, rather than the publication level.

3.5 Data extraction and analysis

Data were systematically extracted from all included studies using the data extraction tool described in Appendix D. Extracted data covered the following:

- **Study characteristics:** This coding focused on capturing the general characteristics of the study, including authors, publication date and status, study location and setting, intervention type, outcomes reported, definition of outcome measures, population of interest, and study and programme funder. Methodological information was also collected, covering the type of quantitative methods employed and whether authors complemented quantitative results with qualitative results and/or conducted any cost or cost-benefit analyses.

• **Critical appraisal (systematic reviews only):** All systematic reviews were appraised following the practices adopted by 3ie systematic review database protocol, which draws on Lewin and colleagues (2009). This process involved appraising each review’s search, screening, risk of bias assessment, data extraction and synthesis. Each systematic review was rated as low, medium or high confidence, drawing on guidance provided in Snilstveit and colleagues (2017). Initially, a 5 per cent sample of reviews was appraised by two researchers, then independently reconciled by a systematic review expert. Reviewers were provided with feedback, and reliability was judged to be sufficient. Subsequently, one person appraised each systematic review, and the systematic review expert independently reviewed all completed appraisals. Impact evaluations were not critically appraised, as this is typically beyond the scope of an EGM.

Descriptive analysis was completed to directly answer the key research questions of the project. In some areas, more detailed cross-cutting analysis and comparisons to other data sources are presented.

3.6 Presentation of the map

Results are presented graphically on an interactive online platform. The main framework is a matrix of interventions and outcomes, with grey and coloured circles representing impact evaluations and systematic reviews. The systematic reviews follow a traffic-light system to indicate confidence in their findings: green for high, orange for medium, red for low. The colour blue indicates that the study is ongoing. The size of the bubble indicates the relative size of the evidence base for that intersection of intervention and outcome. The interactive aspect of the EGM allows users to filter the results based on key variables, thereby facilitating efficient, user-friendly identification of relevant evidence. The filters and their definitions are provided in Table 3.

Table 3: Study characteristics for EGM filtering

<table>
<thead>
<tr>
<th>Filter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>The relevant continent or region in which the intervention took place</td>
</tr>
<tr>
<td>Country</td>
<td>The country in which the intervention took place</td>
</tr>
<tr>
<td>Sex</td>
<td>The sex of the sample for which impact is estimated or the intervention broadly targets</td>
</tr>
<tr>
<td>Age</td>
<td>The age group of the sample for which impact is estimated or the intervention broadly targets</td>
</tr>
<tr>
<td>Setting</td>
<td>The setting where the sample population was primarily located and administered</td>
</tr>
<tr>
<td>Study design</td>
<td>The quantitative experimental or quasi-experimental design implemented to estimate effects</td>
</tr>
<tr>
<td>Mixed methods</td>
<td>Whether qualitative evidence was analysed to complement quantitative results</td>
</tr>
<tr>
<td>Cost evidence</td>
<td>Whether and what cost data was reported for the intervention</td>
</tr>
</tbody>
</table>

Source: 3ie 2020.

5 Available at: https://www.3ieimpact.org/evidence-hub/evidence-gap-maps [Accessed 28 October 2020].
3.7 Study strengths and limitations

The study has the following strengths:

- **Current**: At the time of reporting, this map provides the most up-to-date characterisation of the available evidence of the effects of food systems interventions on food security and nutrition outcomes.
- **Timely**: This map was commissioned in response to a direct policy need, and the review protocol was developed and implemented in a nine-month period, drawing on the latest advances in synthesis project management.
- **Broad**: The scope of the map is broad. Outcome information was also collected for a range of intermediate outcomes reported in studies.

The following limitations can be applied to this study:

- **No forward citation checking**: Due to the high volume of included studies, it was not feasible to screen records that cited included studies.
- **Focused data extraction**: Comprehensive characteristics relating to study equity considerations and research transparency were not extracted at this stage due to time constraints. However, these characteristics will be extracted and uploaded to our 3ie Development Evidence Portal in due course.
- **English language focus**: Studies only published in non-English languages were missed, which may introduce bias. However, research has found that synthesis results are not affected when the effect sizes from non-English studies are removed from the analysis (Higgins et al. 2019).
- **Time-bound**: This map only considered works published up until May 2020, with additional studies identified by the study team being permitted into the map until September 2020. It is planned to keep this map updated through our living Development Evidence Portal. However, some of the methodological approaches to updates are still being established.
- **Quality of impact evaluations not reviewed**: The standard analytical procedure for an EGM is to appraise the quality of systematic reviews but not impact evaluations. While the impact evaluations included meet our eligibility criteria, the quality of the evaluation specification or design (e.g. through an assessment of the theory of change or the completion of a risk of bias assessment) was not appraised.

4. Results

This section presents the EGM’s key findings, summarising the search results and included studies. It draws on metadata captured during screening and descriptive information extracted from studies. Definitions of interventions and outcomes in this framework are presented in Appendix A.

4.1 Results of the search

The electronic searching of academic databases produced a total of 142,849 records, and non-electronic searching and citation tracking identified a further 1,590 (resulting in 144,439 total records for screening). After removing 32,798 duplicate records, screeners used title and abstract information only to screen 111,641 study records against the eligibility criteria. At this stage, studies were mainly excluded for not focusing on a
relevant intervention and/or not being an impact evaluation. This screening identified 10,320 records as potentially relevant. Finally, screeners conducted a full-text review of these studies and identified 2,503 total records that met all eligibility criteria and were included in the review. These records corresponded to 2,035 unique studies. A summary of this process is presented in Figure 2.

Figure 2: Overview of search and screening process

Source: 3ie 2020. Analysis of review search results.

Note: citation records for 1,620 studies were identified; when attempting to find the full text, there was no online record. SR = systematic review; IE = impact evaluation.

4.2 Characteristics of the evidence base

The remainder of this section provides a descriptive overview of the distribution of studies using the PICOS characteristics described in Section 3. A tabular breakdown of the Figures presented is provided in Appendix E.
4.2.1 Size of the evidence base

Since 2000, the total number of impact evaluations and systematic reviews has increased more than a hundredfold, with increases especially high for evaluations of food supply chain and consumer behaviour interventions.

Since 2000, the number of published studies evaluating and reviewing relevant interventions has increased, with the number of known reviews meeting the inclusion criteria increasing from 0 to 178 (with 3 still ongoing) and impact evaluations increasing from 17 to 1,838, with just over 100 still ongoing (Figure 3).

Figure 3: Cumulative distribution of included studies by publication year

The rate of evidence production has also increased, with half of all impact evaluations published between 2015 and 2019. This growth in research occurred across all domains but is largely due to an increased number of studies evaluating food supply chain and consumer behaviour interventions (Figure 4), with the associated research areas growing by more than tenfold between 2000 and 2019. However, the increase in studies evaluating food environment interventions was not as large (threelfold during the period).

6 From Figure 4, we consider the change in the number of studies published between 2000–2004 and 2015–2019: food supply chain 430/33 = 13.0; food environment 260/79 = 3.3; consumer behaviour 288/22 = 13.1.
Figure 4: Proportion of intervention domains evaluated in impact evaluations over time

Source: 3ie 2020. Analysis of interventions evaluated in 1,854 impact evaluations.
Note: If a study evaluated multiple interventions, the study was counted multiple times.

4.2.2 Intervention coverage
Most interventions were examined by at least one impact evaluation, and all interventions with at least 50 evaluations were synthesised by at least one systematic review.7

The most common interventions were nutrition specific: provision of supplements (SR: n = 67; IE: n = 369), fortification (SR: n = 42; IE: n = 285), classes in the consumer behaviour domain (SR: n = 23; IE: n = 245), direct provision of foods (SR: n = 24; IE: n = 205), and peer support and counselling in the consumer behaviour domain (SR: n = 22; IE: n = 130), as shown in Figure 5. Classes and educational interventions throughout the food system were considered. Most common were classes that targeted consumer behaviour, as opposed to agricultural practices or other factors. These classes were often related to infant and young child feeding practices, but included a range of other topics, such as cooking classes, making healthy purchases and basic nutrition information.

Some evidence gaps exist.
No impact evaluations were identified that examined interventions related to advertising regulations, food waste education programmes or the direct packaging of food. Several intervention categories had fewer than five studies: food safety regulations (n = 1), cold chain initiatives (n = 1), composting education (n = 3), labelling regulations (n = 3), private food donation (n = 3), door-to-door behaviour change communication campaigns (n = 4), provision of goods and/or services to support food processing (n = 4), on-farm and post-harvest processing (n = 4), and access to pesticides (n = 4).

7 Systematic review is referred to as SR and impact evaluation as IE in subsections 4.2 and 4.3.
There were also several interventions associated with multiple impact evaluations but with only one or no systematic reviews. The categories with the most impact evaluations were: *agricultural extension* (SR: n = 1; IE: n = 112), *agricultural inputs – other* (SR: n = 1; IE: n = 65), *agricultural information provision* (SR: n = 0; IE: n = 27), *government manipulations of price* (SR: n = 1; IE: n = 22) and *agricultural insurance* (SR: n = 1; IE: n = 22).

Figure 5: Distribution of included studies by intervention domain and subdomain

Source: 3ie 2020. Analysis of interventions evaluated in 1,838 impact evaluations and 178 systematic reviews.

Note: If a study evaluated multiple interventions, the study was counted multiple times. Note: MC stands for multiple-component interventions.
Several impact evaluations evaluated programmes with components from across the food system, and most of these included at least one food supply chain intervention.

In total, 11 impact evaluations considered programmes with at least 5 intervention categories from the underlying food system framework, and 8 systematic reviews considered a broad range of interventions. All except one of these evaluated programmes included at least one food supply chain intervention, and six were entirely composed of different food supply chain interventions. For example, in the work of Nyyssölä and colleagues (2012), the evaluated programme provided a range of support to improve food security, including creating and training groups of farmers, setting up demonstration farms and providing a range of agricultural inputs.

Studies that evaluated common combinations of interventions were grouped together. Common combinations found in the data are shown in Table 4. In total, 69 studies were grouped into 10 different multiple-component interventions. The most common combinations of food systems interventions identified were classes within the consumer behaviour domain and healthy eating campaigns (n = 11), peer support/counselling and these classes (n = 9), and fortification and direct provision of food (n = 9).

Table 4: Most commonly evaluated multiple-component food systems interventions

<table>
<thead>
<tr>
<th>Multiple-component intervention</th>
<th>No. of SRs</th>
<th>No. of IEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large multiple-component interventions</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Classes and healthy food campaigns</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Peer support / counselling and classes</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Fortification and direct provision of food</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Provision of seeds and farmer field schools</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Peer support / counselling and community meetings</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Direct provision of foods and peer support</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Professional services and classes</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Direct provision of foods and classes</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Provision of supplements and classes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Education / information - other educational programmes and classes</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Source: 3ie 2020. Analysis of interventions evaluated in 1,838 impact evaluations and 178 systematic reviews.

Notes: All classes relate to those in the consumer behaviour domain. Any intervention that evaluated more than five separate intervention codes from the underlying framework was recorded as a large multiple-component intervention. This threshold of five codes was selected arbitrarily.

4.2.3 Outcome coverage

The screening classified outcomes into thematic categories and as either intermediate or final outcomes. Final outcomes involve ultimate consumer food security, physical and/or mental development and nutrition outcomes, while intermediate outcomes involve preceding causal steps in the theories of change. First, the distribution of outcomes by thematic category was considered, followed by intermediate and final type.
The most common final outcome categories were anthropometric, micronutrient status, and diet quality and adequacy outcomes. Almost three quarters of studies included at least one final outcome effect size (SR: n = 170; IE: n = 1,353). As shown in Figure 6, the most common outcomes were: anthropometric (SR: n = 111; IE: n = 671); focused on diet quality and adequacy (SR: n = 51; IE: n = 555), micronutrient status (SR: n = 78; IE: n = 530), iron (SR: n = 66; IE: n = 395), vitamin A (SR: n = 24; IE: n = 119), zinc (SR: n = 24; IE: n = 102) and iodine (SR: n = 5; IE: n = 24) status; concerned with other developmental outcomes (SR: n = 31; IE: n = 144); and focused on food affordability and availability (SR: n = 10; IE: n = 102) (Figure 6). Relatively few studies reported effects for food safety outcomes (SR: n = 1; IE: n = 34), of which the majority related to food-borne illness (n = 26).

Figure 6: Outcome category frequency by outcome type

Source: 3ie 2020. Analysis of interventions evaluated in 1,838 impact evaluations and 178 systematic reviews.
Notes: If a study evaluated multiple outcomes, the study was counted multiple times. This means that the total number of studies reported here is higher than the actual number of studies included in the map.

These indicators were highly variable. The most commonly considered outcomes were related to breastfeeding and dietary diversity. However, there was a large ‘others’ category that was dominated by reporting on the consumption of specific foods or categories of foods, as would be seen in a food frequency questionnaire. Very few studies considered whether diets met specific, predetermined quality metrics, such as if a recommended dietary allowance was met.
The most common intermediate outcome categories were economic, agricultural and intrinsic motivational outcomes.

Final outcomes relate to the final set of food security and nutrition outcomes of interest to this map. Intermediate outcomes reflect the range of expected causal steps in the theories of change underpinning food systems interventions; for example, outcomes related to changes in economic or agricultural activities or changes in the knowledge, perceptions or preferences of individuals, which were referred to collectively as intrinsic motivators in our framework.

Fewer studies examined intermediate outcomes, with just under half of all studies reporting at least one effect size for an intermediate outcome (SR: n = 38; IE: n = 848) (Figure 7). Studies were most likely to include economic outcomes (SR: n = 18; IE: n = 350) such as income and the value of agricultural output, the ownership of assets, food prices or purchasing behaviour; agricultural outcomes (SR: n = 13; IE: n = 309) that relate to the quality and scale of agricultural crop and livestock production; indicators measuring intrinsic motivators (SR: n = 16; IE: n = 302); and measures of behaviour change (SR: n = 15; IE: n = 269), such as the observed adoption of recommended agricultural or breastfeeding behaviours. Several intermediate outcomes were measured in fewer than five studies, including: economic, social and political stability; regulations; food loss; environmental impacts of the food system; food distribution; and advertising and labelling.

The most common final impact evaluation outcomes were linear growth, iron status, weight and relative weight; the most common intermediate outcomes were behaviour change, knowledge, income and plant production.

To illustrate the specific outcomes examined in impact evaluations, Figure 7 reports the most common measures by outcome type. Anthropometric outcomes were commonly measured using linear growth, weight and/or relative weight.
The data identified several outcome gaps related to food access, safety and affordability, as well as a few understudied intermediate outcomes. Several final outcomes were evaluated in fewer than five studies: location of foods in stores; climate impact; non-food waste produced; import/export; agricultural cooperative performance; women’s self-esteem; food spoilage or loss; and economic, social and political stability. (Table 5 lists all the least-common outcomes evaluated by included studies.)
Table 5: Least-common outcomes evaluated by impact evaluations in the evidence base

<table>
<thead>
<tr>
<th>Intermediate Outcome</th>
<th>No.</th>
<th>Final Outcome</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food toxins</td>
<td>2</td>
<td>Location of foods in stores</td>
<td>1</td>
</tr>
<tr>
<td>Other food safety outcome</td>
<td>6</td>
<td>Climate impact</td>
<td>1</td>
</tr>
<tr>
<td>Food access</td>
<td>9</td>
<td>Non-food waste produced</td>
<td>1</td>
</tr>
<tr>
<td>Physical development</td>
<td>9</td>
<td>Import/export</td>
<td>2</td>
</tr>
<tr>
<td>Food affordability</td>
<td>12</td>
<td>Agricultural cooperative performance</td>
<td>2</td>
</tr>
<tr>
<td>Food availability & supply</td>
<td>12</td>
<td>Women’s self-esteem</td>
<td>2</td>
</tr>
<tr>
<td>Other food security outcome</td>
<td>13</td>
<td>Food spoilage or loss</td>
<td>3</td>
</tr>
<tr>
<td>Iodine micronutrient status</td>
<td>24</td>
<td>Ecological, social & political stability</td>
<td>3</td>
</tr>
<tr>
<td>Insufficient diet</td>
<td>25</td>
<td>Water-related</td>
<td>9</td>
</tr>
<tr>
<td>Food-borne illness</td>
<td>26</td>
<td>Women’s ownership of assets</td>
<td>11</td>
</tr>
<tr>
<td>Food insecurity measures</td>
<td>72</td>
<td>Women’s control of resources</td>
<td>11</td>
</tr>
</tbody>
</table>

Source: 3ie 2020. Analysis of interventions evaluated in 1,838 impact evaluations.
Note: If a study evaluated multiple outcomes, the study was counted multiple times. This means that the total number of studies reported here is higher than the actual number of studies included in the map.

Most studies evaluated only final outcomes, but increasingly studies have considered intermediate outcomes.

Studies that only evaluated final outcomes accounted for just over half the evidence base (n = 990; 54%), while just over a quarter of studies considered intermediate outcomes only (n = 485), and one fifth considered both intermediate and final outcomes (n = 363), as shown in Panel A of Figure 8, below. That said, the proportion of studies that only measured intermediate outcomes, and both types of outcome, increased between 2000 and 2019 (Panel B), from 12 to 297 studies and 9 to 215 studies, respectively. In particular, there was an increase in the number of studies only considering intermediate outcomes that evaluated food supply chain interventions; namely, extension programmes and farmer field schools. In the case of studies evaluating both intermediate and final outcomes, the increase shown in Panel B is mainly due to an increase in studies evaluating information and behaviour change interventions.
Figure 8: Disaggregation of outcomes by intermediate and final categories and publication year

Source: 3ie 2020. Analysis of interventions evaluated in 1,838 impact evaluations.

4.2.4 Country coverage
Geographical data was collected on countries where studies were conducted, with additional analysis of country income and fragile and conflict-affected country status, both as defined by the World Bank.

A plurality of impact evaluations were located in Sub-Saharan Africa, lower middle-income countries and countries without fragility issues.
Overall, the findings showed the following results with respect to the geographic locality of studies:
- **Region**: Impact evaluations were most commonly located in Sub-Saharan Africa (n = 648; 33%), followed by South Asia (n = 367; 20%), and East Asia and the Pacific (n = 324; 17%), as shown in Figure 9.

- **Income level:** Roughly a quarter of studies were conducted in low-income countries (n = 485), as defined by the year of publication, while approximately 40 per cent took place in lower middle-income countries (n = 792), and just over one third took place in upper-middle income countries (n = 627).

- **Fragility setting:** Seven per cent of studies were conducted in fragile contexts (n = 130).

- **Multi-country studies:** A subset of 33 studies reported effects across multiple countries (99 country effects).

Highly populated countries were the most common study locations.
The greatest number of impact evaluations took place in India (n = 176; 9%), Bangladesh (n = 116; 6%), China (n = 115; 6%), Brazil (n = 105; 6%) and Iran (n = 96; 5%), as shown in Figure 9. When broken down by region, Table 6 shows the top three countries associated with the most studies.

Table 6: Overview of countries with the most impact evaluations by region

<table>
<thead>
<tr>
<th>Region / rank</th>
<th>Country with most studies</th>
<th>Country with second-most studies</th>
<th>Country with third-most studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Asia and the Pacific</td>
<td>China (n = 115)</td>
<td>Indonesia (n = 48)</td>
<td>Vietnam (n = 42)</td>
</tr>
<tr>
<td>Europe and Central Asia</td>
<td>Turkey (n = 20)</td>
<td>Belarus (n = 5)</td>
<td>Albania (n = 3)</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>Brazil (n = 105)</td>
<td>Mexico (n = 80)</td>
<td>Peru (n = 21)</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
<td>Iran (n = 96)</td>
<td>Morocco (n = 7)</td>
<td>Egypt (n = 7)</td>
</tr>
<tr>
<td>South Asia</td>
<td>India (n = 176)</td>
<td>Bangladesh (n = 116)</td>
<td>Nepal (n = 35)</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>Kenya (n = 81)</td>
<td>Ethiopia (n = 75)</td>
<td>Ghana (n = 56)</td>
</tr>
</tbody>
</table>

Source: 3ie 2020. Descriptive analysis of data extracted from 1,838 included impact evaluations, which included 1,904 evaluations in total once multi-country studies were accounted for.
Similar types of interventions were implemented in each region, although there were some variations for the Sub-Saharan Africa and Latin America regions. In Sub-Saharan Africa, a relatively larger proportion of interventions resided within the production system (n = 300) compared to the other regions. In the case of Latin America, studies evaluating at least one food environment intervention were most prevalent (n = 136), especially provision or use of supplements (n = 69), cash-for-food programmes and direct provision of food (both n = 35).

Impact evaluations have been conducted in most fragile states; the interventions evaluated in fragile states are somewhat similar to interventions evaluated in all L&MICs.
In total, 130 separate country evaluations (reported in 128 studies) were conducted in countries classified as fragile. Most of these studies took place in Sub-Saharan Africa (n = 87) and the Middle East and North Africa (n = 15), the two regions with the most fragile states. In these two regions, 58 per cent of all fragile and conflict-affected countries had at least one impact evaluation. The fragile states where evaluations most commonly took place were Mali (n = 22), Mozambique (n = 17) and the Democratic Republic of Congo (n = 16). Some fragile and conflict-affected countries had no studies conducted.11 In total, the included studies covered 25 of the world’s 36 fragile countries.

11 These were Djibouti, Central African Republic, Comoros, Congo, Eritrea, Afghanistan, Papa New Guinea, Tuvalu, Kiribati, Solomon Islands and Micronesia.
The distribution of interventions studied in fragile studies broadly matched that of non-fragile states, with some differences. For example, the most common interventions evaluated in fragile states were the provision of supplements, direct provision of food and provision of new and/or improved seed varieties, rather than the provision of supplements, fortification and classes in the consumer behaviour domain, as described above.

The distribution of outcomes assessed in fragile states also broadly aligns with those measured in studies not located in fragile states, although relatively more studies considered food insecurity (4% versus 12%), behaviour change (14% versus 21%) and knowledge (13% versus 19%) in fragile states. In terms of population and study characteristics, some minor differences were found between studies located in fragile and non-fragile states. Studies in fragile states included fewer local (69% versus 77%) and more transnational (9% versus 1%) studies, and focused less on adults (26% versus 15%) and more on children aged 5–9 years (12% versus 18%).

4.2.5 Population and setting coverage
Data was extracted regarding study participants, the scale of implementation and where interventions were administered.

Impact evaluations mostly targeted both sexes and people of diverse ages, except those over 60.
Most studies included both sexes (n = 1,055; 59%) or did not specify sex targets (n = 338; 19%). Ten studies specifically targeted males (1%), while 364 studies targeted females (20%). Of the 65 per cent of studies that reported participant age information (Figure 10, Panel A), children under the age of 2 comprised the most prevalent age bracket (n = 497; 19%), closely followed by adults aged 20–59 (n = 466; 18%) and adolescents aged 10–19 (n = 440; 17%). Relatively few studies assessed intervention effectiveness for older populations (n = 59; 2%).
Figure 10: Distribution of impact evaluations by age and reproductive cycle targeting

![Bar chart A: Age (years) distribution](image)

- Not specified
- > 60
- 20–59
- 10–19
- 5–9
- 2–4
- < 2

![Bar chart B: Reproductive state](image)

- Premenarchal women and girls
- Postmenopausal women
- Lactating
- Postpartum
- Pregnant

Source: 3ie (2020). Descriptive analysis of data extracted from 1,838 included impact evaluations.

Notes: Multi-coding was permitted for age and reproductive state. If a study provided information on the age group it was targeting or it presented baseline information of the average age of participants, this was coded using the framework presented in Figure 10. Where age brackets used by authors overlapped with more than one bracket used in this EGM, age was multi-coded.

Of the roughly 25 per cent of evaluations that targeted women at a specific stage in the reproductive cycle (n = 405), the most common stages were pregnancy (n = 214; 53%), postpartum (n = 86; 21%) and lactating women (n = 68; 17%), as shown in Figure 10, Panel B. Among the studies that targeted infants, 14 per cent (n = 69) also targeted pregnant, lactating or postpartum women.

Over half of interventions were conducted in rural areas.

In terms of the locality in which impact evaluations were set, just over half of all studies were set in rural areas (n = 956; 52%), one fifth were in urban areas (n = 379; 21%), and the remainder (where locality was specified) were set in both rural and urban or peri-urban areas (both: n = 107, 6%; peri-urban: n = 49, 3%).

26
Most evaluated interventions were local in scale, and households were the most common setting. Roughly 84 per cent of studies focused on evaluating programmes set entirely in a local area (n = 1,401) – that is, within a regional administrative unit of the country in question. This suggests that few studies were focused on the evaluation of scale-up programmes. Of the studies that evaluated programmes at a national (n = 141) or transnational level (n = 34), the most common interventions were cash-for-food programmes (n = 28), direct provision of food (n = 18), agricultural extension programmes (n = 12), providing access to improved seed varieties (n = 11) and provision of supplements (n = 11).

Figure 11: Distribution of studies by scale of implementation and study setting

In terms of where interventions were administered, we found that a plurality of studies took place in households (n = 627; 33%). There was similar coverage across the next three categories (schools: n = 351, 19%; businesses: n = 334, 18%; communities: n = 400, 21%), with roughly one tenth of interventions administered in hospitals (n = 191; 10%).

Source: 3ie (2020). Descriptive analysis of data extracted from 1,838 included impact evaluations. Note: In the case of panel B, multi-coding was permitted.
4.2.6 Funding for programmes and impact evaluations

Over 1,300 (59%) studies did not specify the programme funding agency type or name. When funding was specified, we found that it was most commonly attributed to government agencies, who were listed as programme funders in 403 (18%) studies, followed by non-profit organisations (n = 126; 6%), international aid agencies (n = 108; 5%), and charitable or private foundations (n = 101; 4%) (Figure 12). Few studies specified programmes funded by for-profit firms and international financial institutions (2%,), although these organisations might have actively financed programmes where funding was not specified.

Looking at research funders, we found a similar distribution across the categories (Figure 12). However, more studies specified research funders, with no agency type for over 900 studies (32%), and no name for over 700 (26%).

Figure 12: Programme funder and research funder categories for impact evaluations

Source: 3ie 2020. Descriptive analysis of data extracted from 1,838 included impact evaluations. Note: Where more than one funding agency was reported, multi-coding was permitted.

The top 10 programme funders, as defined by the count of unique programmes evaluated, are shown in Table 7. USAID, a government agency, was specified as funding programmes evaluated in 52 of the included studies, with the World Bank and the Bill & Melinda Gates Foundation funding the next-highest number of programmes evaluated by studies. Of the top 10 programme funders, 6 were government agencies, 2 were international aid agencies, 1 was a foundation and 1 was an international financial institution.
Table 7: Top 10 programme funders of impact evaluations

<table>
<thead>
<tr>
<th>Programme funding agencies</th>
<th>No.</th>
<th>Per cent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAID*</td>
<td>52</td>
<td>5.3</td>
</tr>
<tr>
<td>World Bank**</td>
<td>32</td>
<td>3.3</td>
</tr>
<tr>
<td>Bill & Melinda Gates Foundation</td>
<td>31</td>
<td>3.2</td>
</tr>
<tr>
<td>DFID</td>
<td>27</td>
<td>2.7</td>
</tr>
<tr>
<td>UNICEF</td>
<td>24</td>
<td>2.4</td>
</tr>
<tr>
<td>World Food Programme</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Government of India</td>
<td>14</td>
<td>1.4</td>
</tr>
<tr>
<td>National Institutes of Health***</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Government of Mexico</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Swiss Agency for Development and Cooperation</td>
<td>9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Source: 3ie 2020. Descriptive analysis of data extracted from 1,838 included studies.
Notes: *This includes sub-offices and projects of USAID. **This includes programmes, funds and committees associated with the World Bank. ***This includes the Fogarty International Centre and the Eunice Kennedy Shriver National Institute. The percentage provided does not include studies that did not specify programme funders.

The top 10 agencies that funded research were also identified (Table 8). Six agencies were in the top 10 for both programme and research funding, with USAID remaining the top funder. The agency categories also remained similar, with 5 government agencies, 1 international financial institution, 1 private foundation and 3 international aid agencies.

Table 8: Top 10 research funders

<table>
<thead>
<tr>
<th>Research funding agencies</th>
<th>No.</th>
<th>Per cent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAID*</td>
<td>103</td>
<td>5.0</td>
</tr>
<tr>
<td>Bill & Melinda Gates Foundation</td>
<td>93</td>
<td>4.5</td>
</tr>
<tr>
<td>DFID</td>
<td>57</td>
<td>2.8</td>
</tr>
<tr>
<td>World Bank Group**</td>
<td>50</td>
<td>2.4</td>
</tr>
<tr>
<td>UNICEF</td>
<td>49</td>
<td>2.4</td>
</tr>
<tr>
<td>National Institutes of Health***</td>
<td>42</td>
<td>2.0</td>
</tr>
<tr>
<td>3ie</td>
<td>36</td>
<td>1.8</td>
</tr>
<tr>
<td>International Food Policy Research Institute</td>
<td>30</td>
<td>1.5</td>
</tr>
<tr>
<td>National Natural Science Foundation of China</td>
<td>28</td>
<td>1.4</td>
</tr>
<tr>
<td>National Council for Scientific and Technological Development</td>
<td>27</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Source: 3ie 2020. Descriptive analysis of data extracted from 1,838 included studies.
Notes: *This includes sub-offices and projects of USAID. **This includes programmes, funds and committees associated with the World Bank Institute. ***This includes the Fogarty International Centre and the Eunice Kennedy Shriver National Institute. The percentage provided does not include studies that did not specify programme funders.

4.2.7 Impact evaluation and synthesis methods

Roughly three quarters of impact evaluations implemented randomised designs; a minority of studies used qualitative analysis to understand effect sizes or conducted a cost analysis.

Just over three quarters of included impact evaluations employed a randomised controlled trial design (n = 1,390) as their primary causal inference method, while the remaining quarter implemented quasi-experimental designs (n = 448). Of these latter studies, most used statistical matching (n = 242) and difference-in-differences (n = 136),
with fewer studies employing other designs, such as instrumental variable approaches (n = 41) and fixed effects estimation (n = 33).

Data were extracted with regard to whether impact evaluations also conducted complementary qualitative research to help explain effects. (Studies that reported using qualitative research to inform interventions and/or evaluation designs were not classified as qualitative research for this analysis.) In total, just over 10 per cent of impact evaluations adopted a mixed-methods approach (n = 186).

Finally, 173 impact evaluations (9%) reported cost data or presented a cost analysis in some form. Table 9 shows that of those that presented cost data, the majority presented detailed budget information or attempted to make some comparison between the costs of a programme and the additional benefits estimated. A comparison between costs and benefits include methods such as cost-effectiveness analysis, cost-benefit analysis and economic evaluation. Just under half (43%) of studies reporting cost data were published in or after 2018, which suggests that the inclusion of cost data in impact evaluations published in this sector is nascent.

Table 9: Overview of the type of costs and cost analysis presented in impact evaluations

<table>
<thead>
<tr>
<th>Cost presentation and analysis</th>
<th>No.</th>
<th>Per cent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The programme budget is stated in some form (e.g. presented in total or per capita)</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td>Programme costs are disaggregated in some way</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>Analysis of costs is undertaken</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>A comparison between costs and benefits is made using a cited method (e.g. cost-benefit analysis, cost-effectiveness analysis, economic evaluation)</td>
<td>61</td>
<td>35</td>
</tr>
</tbody>
</table>

Source: 3ie 2020. Descriptive analysis of data extracted from 174 included impact evaluations.

Meta-analysis is the most common synthesis method, and a majority of systematic reviews sought to understand sources of heterogeneity.

Review authors most commonly used meta-analysis to synthesise results across studies (n = 109; 62%), followed by descriptive or narrative analysis (n = 56; 32%) and vote counting (n = 9; 5%).12 (When there are enough similar studies to synthesise, meta-analysis has several advantages: transparency, estimating the heterogeneity in results and increasing statistical power.) Most reviews also explored how study impacts might vary by different moderating factors, often labelled an analysis of heterogeneity (n = 148; 76%). Where review authors examined possible sources of heterogeneity, meta-analysis by subgroup was the most common method (n = 64; 43%), followed by descriptive or textual analysis (n = 44; 30%) and meta-regression (n = 44; 18%).13

12 This analysis was based on data extracted in 175 critical appraisals of systematic reviews included in this EGM. Information provided in three protocols was not appraised, and therefore not included in this analysis. Multi-coding of synthesis methods was permitted, which means the total count of methods used can be greater than 175.

13 In some cases, authors implemented multiple heterogeneity analyses. In these cases, multi-coding was permitted.
Low-confidence reviews did not clearly report screening and data extraction procedures, attempt to understand heterogeneity, or effectively assess and consider risk of bias present in studies.

Finally, each systematic review was critically appraised on the quality of methods employed to search for studies, assess the studies and synthesise the evidence.\(^\text{14}\) High confidence in the reported conclusions of a review occurs if the review conducted a comprehensive search, credibly assessed and reported risk of bias, reliability-screened studies and extracted data, and appropriately synthesised evidence. A low confidence rating occurs when the review used search, appraisal or synthesis methods likely to bias the results in some way.

Most studies were appraised as low confidence: 95 of completed reviews scored a 'low' confidence rating (54%); 46 (26%) were rated 'medium' confidence; and 34 (19%) were rated 'high' confidence.

Findings demonstrated that marginally more studies scored ‘low’ on synthesis methods (n = 95), than on search, identification and appraisal procedures used (n = 80), as shown in Figure 13. For synthesis methods, we found that unreliable reporting of study information was a key issue (n = 73), especially unclear reporting on whether study information was extracted by at least two reviewers. We also identified studies suffering from the following synthesis issues: unclear reporting on the risk of bias (n = 45), limited attempts to assess or understand possible sources of heterogeneity (n = 20), and inappropriate synthesis methods used relative to the question being answered (n = 19).

In the case of study identification and appraisal, all reviews specified at least some of the review scope criteria, but reviews had issues with respect to: possible bias in selecting which studies to include, typically not reporting that two reviewers independently screened studies (n = 53); the comprehensiveness of the search strategy (n = 46); and the criteria used to assess the study’s risk of bias or not assessing risk of bias at all (n = 41).

Figure 13: Overview of systematic review critical appraisal results by key subdomains

\(^\text{14}\) The appraisal rubric we used is presented in full in Appendix D.
High-confidence reviews were mostly published in or after 2015 and are focused on synthesising available evidence on the effects of supplementation and fortification interventions.

High-confidence reviews appear to have been published in later years: just over 75 per cent (n = 26) of high-confidence reviews were published in or after 2015, compared to 60 per cent of low- and medium-quality reviews. The high-confidence reviews predominantly focused on synthesising the effects of the provision or use of supplements on birth outcomes (n = 10) and iron or anaemia status (n = 7) and the effect of fortification on iron or anaemia status (n = 8).15

5. Conclusions and implications

5.1 Answering our research questions

Based on the results presented above, answers to the research questions specified in Section 2 are presented below.

5.1.1 Research question 1 – Coverage

What are the extent and characteristics of existing empirical evidence regarding the effects of selected food systems interventions on food security and nutrition outcomes in L&MICs?

- **Evidence base**: 1,838 impact evaluations and 178 systematic reviews were identified. This evidence base has increased in size over a hundredfold in the last two decades.

- **Interventions**: Several intervention types were examined in over 100 impact evaluations and at least 20 systematic reviews. These interventions were mostly nutrition-specific and included supplementation, fortification, classes within the consumer behaviour domain, the provision of foods, peer support and/or counsellors, and agricultural extension programme components. Increasingly, interventions related to the food supply chain and consumer behaviour are being conducted. Three intervention areas with no identified impact evaluations were identified: advertising regulations, food waste education programmes and direct packaging of food. There were also several interventions that had been examined by impact evaluations but had few to no identified systematic reviews, such as agricultural extension and agricultural information provision.

- **Outcomes**: There was broad coverage of most final outcomes, but less evidence on the effects of food systems interventions on food safety, affordability and availability outcomes. Fewer studies examined intermediate outcomes until recently. In particular, there was less evidence on outcomes relating to economic, social and political stability; regulations; food loss; the environmental impacts of the food system; food distribution; measures of diet insufficiency; advertising; and labelling. That said, study authors are increasingly examining intermediate, or both intermediate and final, outcomes in their studies.

- **Geography**: The most common study location was Sub-Saharan Africa, lower middle-income countries and countries without fragility issues. India, China and Bangladesh hosted the most impact evaluations, accounting for nearly one fifth of all studies, collectively. Among fragile states, Mali, Mozambique and the Democratic

15 Multi-coding was permitted in this analysis.
Republic of Congo were the most common study locations, and there were no major differences in interventions used in fragile states and non-fragile states.

- **Populations and settings:** Impact evaluations mostly targeted both sexes and people of diverse ages, except those over 60 years of age. Most impact evaluations were conducted at a local level in households, and over half were in rural areas.

- **Methods:** Roughly three quarters of impact evaluations implemented randomised designs, and a minority of studies sought to understand effect sizes using qualitative analysis or conducted a cost analysis. High-confidence systematic reviews were mostly published in or after 2015, and are commonly focused on synthesising the effects of supplementation and fortification interventions.

5.1.2 Research question 2 – Gaps

What are the major primary and synthesis evidence gaps in the literature?

Table 10 shows, at a high level, areas where there is impact evaluation evidence available to inform development policy. The numbers in each cell indicate the number of studies that assessed the causal link between the related intervention-outcome combination. As an example, the map indicates that a high volume of impact evaluation evidence on the effects of affordability and availability interventions and micronutrient status outcomes is available (n = 286).

In contrast, few studies evaluated the effect of food loss and waste management or promotion and labelling interventions on any of the outcomes of interest, and fewer studies considered the effects of interventions on food safety outcomes. To illustrate how this map can be used in more detail, a range of EGM use case examples are discussed in Appendix G, which draw on the results of the EGM, authors’ own experiences and the considerations set out in Section 1.2.

Table 10: High-level summary of the evidence mapping of impact evaluations

<table>
<thead>
<tr>
<th>Intervention / outcome</th>
<th>Food safety</th>
<th>Food affordability & availability</th>
<th>Micro-nutrient status</th>
<th>Diet quality & adequacy</th>
<th>Developmental outcomes</th>
<th>Anthropometric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production system</td>
<td>4</td>
<td>54</td>
<td>20</td>
<td>84</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>Distribution & storage</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Processing & packaging</td>
<td>7</td>
<td>6</td>
<td>215</td>
<td>48</td>
<td>50</td>
<td>146</td>
</tr>
<tr>
<td>Food loss & waste management</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Affordability</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>46</td>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>Availability</td>
<td>18</td>
<td>26</td>
<td>282</td>
<td>119</td>
<td>64</td>
<td>288</td>
</tr>
<tr>
<td>Promotion & labelling</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Women’s empowerment</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Information / BCC</td>
<td>10</td>
<td>11</td>
<td>57</td>
<td>300</td>
<td>36</td>
<td>234</td>
</tr>
<tr>
<td>Multicomponent</td>
<td>0</td>
<td>9</td>
<td>16</td>
<td>43</td>
<td>8</td>
<td>48</td>
</tr>
</tbody>
</table>

Source: 3ie 2020. Descriptive analysis of data extracted from 1,838 included impact evaluations.

Notes: BCC = behaviour change communication. If a study evaluated multiple interventions and outcomes, the study was counted multiple times. This means that the total number of studies reported here is higher than the actual number of studies included in the map.

16 The fully disaggregated interactive evidence gap map associated with this project can be found here: https://gapmaps.3ieimpact.org/evidence-maps/food-systems-and-nutrition-evidence-gap-map
Given the volume of studies included, it is not feasible to discuss all potential gaps identified by the exercise in this report. Instead, focus was directed towards several gaps of interest outlined in more detail below:

Women’s empowerment: Women are traditionally significant actors within food systems. However, relatively few studies were identified that examined interventions supporting women’s decision-making or measured outcomes regarding women’s empowerment. Some interventions did specifically target women, but typically as mothers whose health affects the health of their infants. Many more studies focusing on women fell within the consumer behaviour domain, targeting women as cooks and breastfeeding mothers, rather than as actors within the food supply value chain.

Under-researched but commonly implemented interventions: Several interventions were identified that are not well researched but have been widely implemented. For example, taxes on sugar-sweetened beverages and labelling regulations for unhealthy foods have not been evaluated for their impacts on weight, yet more than 40 countries (many of them L&MICs) tax sugar-sweetened beverages, and several (including Brazil, China and Thailand) have adopted labelling regulations (OEH 2020; Zhang et al. 2014) in an effort to fight the obesity epidemic. Similarly, funders commonly support post-harvest processing interventions to impact a range of outcomes. However, impacts were only found in four evaluations that examine these interventions.

Intervention scale: The vast majority of evaluations took place at the local and subnational level, resulting in less evidence on national and transnational interventions. Local programmes, while important, do not require the resources of national and transnational programmes, nor do they affect as many people. As both resources and reach increase, the ethical imperative for evaluations also increases because the potential harm is larger. Although evaluations of these large-scale interventions can be difficult because randomisation is not practical, quasi-experimental designs can be employed.

Magnitude of diet quality and adequacy outcomes: The 400 studies that used ‘other dietary quality and adequacy’ outcomes represent an interesting gap for evidence synthesis. These studies did not measure micronutrient status, dietary diversity, breastfeeding or sufficiency as related to an established standard, but used other approaches to quantify diet. Often, these approaches involved reporting the intakes of specific foods or food groups. While providing a wealth of information, the variation in outcomes makes drawing conclusions across studies challenging, thereby potentially requiring the use of novel synthesis methods.

Method considerations: There are several important methodological gaps. The strong focus on randomised trials provides rigorous evidence but can also result in interventions that do not lend themselves to randomisation being understudied. Mixed-methods approaches and those considering cost evidence are also severely underrepresented in the literature. As a result, there is little evidence regarding why these interventions work or if they were worth the investment.
5.1.3 Research question 3 – Research needs
What intervention and/or outcome areas could be prioritised for primary research and/or evidence synthesis?
Below is a partial list of interventions and outcomes that are identified as understudied by this mapping exercise and may be of interest to stakeholders when considering the allocation of research and programming resources.

Illustrative list of interventions to prioritise for evaluation
- Government manipulations of price
- Advertising and labelling regulations
- On-farm, post-harvest processing
- Interventions to support food packaging
- Efforts to support women’s empowerment within the food system
- Innovative store design
- Cold chain storage

Illustrative list of outcomes to prioritise for evaluation
- Women’s empowerment
- Economic, social and political stability
- Food loss
- Environmental impacts of the food system
- Measures of diet insufficiency

Illustrative list of evidence synthesis priorities
- Agricultural extension and information-sharing activities within the food value chain
- Provision of free or reduced-cost farm inputs to crop production
- Educational approaches within the food value chain
- Agricultural insurance products
- Outcomes related to other diet quality and adequacy measures

5.2 Implications for policy and research
Based on the results presented in this review and discussion with the project advisory group, the following subsections propose a set of implications for policy and practice and research in the sector.

5.2.1 Policy and practice
- **Make use of high-quality systematic reviews:** A total of 34 high-quality systematic reviews were identified. If one or more of these reviews relates to an area relevant to you as a reader, the authors of this study think there is value in consulting them – particularly for the design and development of new policies and programmes.
- **Consider investing in under-researched areas:** The map identified several intervention-outcome combinations where there is relatively little impact evaluation evidence, and others where the intervention mechanism is not well understood. If these areas align with any of your existing or planned programming priorities, consider allocating resources to fund theory-based, mixed-methods impact evaluations.
• **Contextualise the evidence mapping with other sources:** When using this map to make strategic and/or resource allocation decisions, triangulate the results of our mapping with other information sources to assess how meaningful the identified gaps are for your context. Other sources that can be used to support decision-making include:
 o Existing or planned research and interventions by government agencies and development partners;
 o Other forms of evidence, including implementation research, process evaluations, qualitative studies, and programming administrative and monitoring information;
 o Existing theories of change and logical frameworks; and
 o Your own formative work and local knowledge.

• **Be cautious when considering implementing under-researched interventions:** Several widely implemented interventions, such as those related to labelling and advertising regulations, were found to have relatively weak evidence bases. The implementation of these interventions without additional research could lead to unintended consequences and/or the inefficient use of limited resources.

5.2.2 **Research**

• **Consider more nuanced analysis in well-researched areas:** The mapping identified several well-evidenced areas, such as studies looking at the effects of fortification and supplementation interventions. In the future, research could assess effects for different populations and examine the intermediate steps in a theory of change, either quantitatively, as part of an impact evaluation or quantitatively as part of an impact evaluation or systematic review.

• **Consider standardising outcome measures relating to diet quality and adequacy:** A range of outcome measures that assessed diet quality and adequacy were identified. While these measures may reflect local contexts, there is an opportunity to standardise the measures used in future to aid the synthesis and use of evidence.

• **Support cost and mixed-methods evidence:** There were very few impact evaluations that reported on cost evidence or used qualitative analysis to understand quantitative results. However, this evidence is necessary to understand how limited resources can be best allocated and the mechanisms through which changes may occur, respectively. Qualitative information can also help to inform whether impacts might vary by population or setting.

• **Research should seek to address food systems complexity:** Interventions within the food system are often interlinked with other activities at different points, or interventions outside the food system, such as clinical interventions. Any future primary research or synthesis should consider how the different links and drivers of the food system might affect results, and how this might vary across different contexts. A good starting point would be to consider how the different drivers defined in HLPE 2017 that affect the food system might impact an intervention or population of interest.

• **Assessment of effects where randomisation is not possible:** The current evidence base mainly comprises randomised controlled trials. While randomising units is the cleanest way to address selection bias, focusing on this approach can limit which interventions are studied because randomisation is not always feasible (e.g. for the implementation of tax schemes). If a meaningful evidence gap is identified and randomisation is not possible, creative quasi-experimental designs might provide important evidence without sacrificing much rigor.
References

Included impact evaluations

Adu-Afarwuah S, Lartey A and Brown K H; Zlotkin S ; Briend A ; Dewey K G; . (2008). Home fortification of complementary foods with micronutrient supplements is well accepted and has positive effects on infant iron status in Ghana.. *The American journal of clinical nutrition*, 87(4), pp.929-38.

Adubra L, Port A le and Kameli Y ; Fortin S ; Mahamadou T ; Ruel M T; Martin-Prevel Y ; Savy M ;. (2019). Conditional cash transfer and/or lipid-based nutrient supplement targeting the first 1000 d of life increased attendance at preventive care services but did not improve linear growth in young children in rural Mali: results of a cluster-randomized controlled trial.. American Journal of Clinical Nutrition, 110(6), pp.1476-1490.

Afolami C A and Obayelu A E; Vaughan I I;. (2015). Welfare Impact of Adoption of Improved Cassava Varieties by Rural Households in South Western Nigeria. Agricultural and Food Economics, 3(18), pp..

Agapova S E, Stephenson K B; Divala O and Kaimila Y ; Maleta K M; Thakwalakwa C ; Ordiz M I; Trehan I ; Manary M J ;. (2018). Additional common bean in the diet of Malawian children does not affect linear growth, but reduces intestinal permeability.. Journal of Nutrition, 148(2), pp.267-274.

Agostoni C, Giovannini M and Sala D ; Usuelli M ; Livio L ; Francescato G ; Braga M ; Riva E ; Martiello A ; Colombo C ; Marangoni F ; Galli C ;. (2007). Double-blind, placebo-controlled trial comparing effects of supplementation of two micronutrient sprinkles on fatty acid status in Cambodian infants.. Journal of Pediatric Gastroenterology and Nutrition, 44(1), pp.136-142.

Agrina , Sabrian F and Zulfitri R ; Arneliwati ; Herlina ; Dewi A P;. (2019). The effectiveness of simulation health education to mother breastfeeding skill between two groups in rural area of Riau, Indonesia. Enfermeria Clinica, 29, pp.9-12.

Agustina R, Bovee-Oudenhoven I M. J and Lukito W ; Fahmida U ; Rest O van de; Zimmermann M B; Firmansyah A ; Wulanti R ; Albers R ; Heuvel E G. H. M. van den; Kok F J; (2013). Probiotics Lactobacillus reuteri DSM 17938 and Lactobacillus casei CRL 431 modestly increase growth, but not iron and zinc status, among Indonesian children aged 1-6 years.. Journal of Nutrition, 143(7), pp.1184-1193.

Ahmed Akhter U, Quisumbing Agnes R; Nasreen Mahbuba and Hoddinott John F; Bryan Elizabeth; (2009). *Comparing Food And Cash Transfers To The Ultra-Poor In Bangladesh*. Completed: , pp.1-226. Available at: https://ageconsearch.umn.edu/record/92803/.

Ahmed Tahmeed, Islam Munirul and Choudhury Nuzhat; Hossain Iqbal; Huq Sayeeda; Mahfuz Mustafa; Sarker Shafiqul Alam; (2017). Results with Complementary Food Using Local Food Ingredients.. *Nestle Nutrition Institute workshop series*, 87, pp.103-113.

Al-Mamari A, Al-Hegami M A and Al-Hag S ; Al-Buryhi M ; Al-Amawi S ; Ahmed L ; Al-Awadi L ; Al-Jamal S ; Mohammad W ; Mohammad Y ;. (2014). Prevalence of iron deficiency and iron deficiency anemia in infants and children and treatment with microencapsulated iron II fumarate and supplied ascorbic acid as "Sprinkles". Pharmacology and Pharmacy, 5(7), pp.716-724.

Al-Mekhlafi H M, Al-Zabedi E M; Al-Maktari M T; Atroosh W M; Al-Delaimy A K; Moktar N and Norhayati M ; Sallam A A; Abdullah W A; Jani R ; Surin J ;. (2014). Effects of vitamin A supplementation on iron status indices and iron deficiency anaemia: a randomized controlled trial. Nutrients, 6(1), pp.190-206.

Almeida C A. N. de, Dutra-de-Oliveira J E; Crott G C; Cantolini A and Ricco R G; Ciampo L A. del; Baptista M E. C;. (2005). Effect of fortification of drinking water with iron plus ascorbic acid or with ascorbic acid alone on hemoglobin values and anthropometric indicators in preschool children in day-care centers in Southeast Brazil.. *Food and Nutrition Bulletin*, 26(3), pp.259-265.

Anand K, Lakshmy R and Janakarajan V N; Ritvik A; Misra P; Pandey R M; Kapoor S K; Sankar R; (2007). Effect of consumption of micronutrient fortified candies on the iron and vitamin A status of children aged 3-6 years in rural Haryana. Indian Pediatrics, 44, pp..

Anirban Mukherjee, Premlata Singh and Shantanu Rakshit ; Satya Priya ; Burman R R; Kumari Shubha ; Kanchan Sinha ; Vinayak Nikam ;. (2019). Effectiveness of poultry based Farmers' Producer Organization and its impact on livelihood enhancement of rural women. *Indian Journal of Animal Sciences, 89,* pp.1152-1160.

Anitha S, Kane-Potaka J and Tsusaka T W; Tripathi D ; Upadhyay S ; Kavishwar A ; Jalagam A ; Sharma N ; Nedumaran S ;. (2019). Acceptance and Impact of Millet-Based Mid-Day Meal on the Nutritional Status of Adolescent School Going Children in a Peri Urban Region of Karnataka State in India. *Nutrients, 11*(9), pp..

Anorve-Valdez Gabriela, Quezada-Sanchez Amado David and Mejia-Rodriguez Fabiola; Garcia-Guerra Armando; Neufeld Lynnette Marie; (2018). Fortified food supplementation in children with reduced dietary energy and micronutrients intake in Southern Mexico.. *Nutrition journal, 17*(1), pp.76.

Arcanjo Francisco Plácido Nogueira and Amancio Olga Maria Silverio; Braga Josefina Aparecida Pellegrini; Pinto Vicente de Paula Teixeira; (2010). Randomized controlled trial of iron-fortified drinking water in preschool children.. *Journal of the American College of Nutrition*, 29(2), pp.122-129.

Arcanjo F P N and Santos P R; Arcanjo C P C; Magalhaes S M M; Leite A J M; (2013). Daily and weekly iron supplementations are effective in increasing hemoglobin and reducing anemia in infants.. *Journal of Tropical Pediatrics*, 59(3), pp.175-179.

Patel Archana, Kuhite Priyanka and Puranik Amrita ; Khan Samreen Sadaf; Borkar Jitesh ; Dhande Leena ;. (2018). Effectiveness of weekly cell phone counselling calls and daily text messages to improve breastfeeding indicators.. *BMC Pediatrics*, 18(337), pp..

Ardic A, Caglar S and Poyrazoglu S ; Garipagaoglu M ; Erdogan S ; Onder C ; Akarsu O ; Turan E ; Ozmet T D; Demirer R ;. (2019). The effectiveness of the COPE healthy lifestyles TEEN program in overweight and obese adolescents: randomized controlled study. *Obesity facts*, 12, pp.113-114.

Aregash S, Brouwer I D and Feskens E J M; Abdulaziz A ; Amha K ; De-Regil L M; Osendarp S J M;. (2018). Effectiveness of a program intervention with reduced-iron multiple micronutrient powders on iron status, morbidity and growth in young children in Ethiopia.. *Nutrients*, 10(10), pp.1508.

Arsenault J E, López de Romaña; D and Penny M E; Van Loan ; M D ; Brown K H; Arsenault Joanne E; López de Romaña; Daniel ; Penny Mary E; Van Loan ; Marta D ; Brown Kenneth H; (2008). Additional zinc delivered in a liquid supplement, but not in a fortified porridge, increased fat-free mass accrual among young Peruvian children with mild-to-moderate stunting. *Journal of Nutrition*, 138, pp.108-114.

Ashorn Ulla, Alho Lotta and Arimond Mary ; Dewey Kathryn G; Maleta Kenneth ; Phiri Nozgechi ; Phuka John ; Vosti Stephen A; Zeilani Mamane ; Ashorn Per ; (2015). Malawian mothers consider lipid-based nutrient supplements acceptable for children throughout a 1-year intervention, but deviation from user recommendations is common. *Journal of Nutrition*, 145(7), pp.1588-1595.

Ashorn Per, Alho Lotta and Ashorn Ulla ; Yin Bun ; Cheung ; Dewey Kathryn G; Harjunmaa Ulla ; Lartey Anna ; Nkhoma Minyanga ; Phiri Nozgechi ; Phuka John ; Vosti Stephen A; Zeilani Mamane ; Maleta Kenneth ; (2015). The impact of lipid-based nutrient supplement provision to pregnant women on newborn size in rural Malawi: a randomized controlled trial. *American Journal of Clinical Nutrition*, 101, pp.387-397.

Ashtarian H, Marzbani B and Almasi A; Marzbani B; Khezeli M; Shahabadi S; (2018). The effect of educational intervention based on the theory of planned behaviour on consumption of iron supplement in high school girls. *Journal of Evolution of Medical and Dental Sciences*, 7(39), pp.4291-4298.

Assunçãoa Maria Cecília F and Gigantea Denise P; Cardosob Marly A; Sartorelllic Daniela S; Santos Ina S; (2010). Randomized, Controlled Trial Promotes Physical Activity And Reduces Consumption Of Sweets And Sodium Among Overweight And Obese Adults. *Nutrition Research*, 30(8), pp.541-549.

Attanasio Orazio, Meghir Costas and Baker-Henningham Helen; Bernal Raquel; Pineda Diana; Rubio-Codina Marta; (2016). Improving Guidelines for an Early Childhood Development Program in Rural Colombia. , , pp..

Avitabile Ciro, Cunha Jesse M and Cohn Ricardo Meilman;.. (2019). The medium term impacts of cash and in-kind food transfers on learning.. USA: World Bank Group, pp..

Available at: function URL() { [native code] }.

Awotide B A, Chagomoka T and Sobgui C M; Bihon W ; Afari-Sefa V ; Tenkouano A ; Ndiaye K ; Diouf O ;. (2019). Impact of best practice hubs (BPHs) and vegetable technology immersion cluster (VTICs) on vegetable productivity and welfare of rural farm households in Mali. *Acta Horticulturae*, 1258, pp.37-46.

Bacardi-Gascon M, Perez-Morales Ma and Jimenez-Cruz A ;. (2012). A six month randomized school intervention and an 18-monthfollow-up intervention to prevent childhood obesity in Mexican elementary schools . , , pp..

Bah Amat, Pasricha Sant-Rayn and Jallow Momodou W; Sise Ebrima A; Wegmuller Rita ; Armitage Andrew E; Drakesmith Hal ; Moore Sophie E; Prentice Andrew M;,. (2017). Serum hepcidin concentrations decline during pregnancy and may identify iron deficiency: analysis of a longitudinal pregnancy cohort in The Gambia.. *Journal of Nutrition*, 147(6), pp.1131-1137.

Banerjee Abhijit, Hanna Rema and Kyle Jordan C; Olken Benjamin A; Sumarto Sudarno ;. (2016). Contracting Out the Last-Mile of Service Delivery: Subsidized Food Distribution in Indonesia. , , pp..

Baqui A H, Walker C L F; Zaman K and El-Arifeen S ; Chowdhury H R; Wahed M A; Black R E; Caulfield L E;. (2005). Weekly iron supplementation does not block increases in serum zinc due to weekly zinc supplementation in Bangladeshi infants.. *Journal of Nutrition*, 135(9), pp.2187-2191.

Filho V C B, Bandeira A D S; Minatto G and Linard J G; Silva J A D; Costa R M D; Manta S W; Sá S A M; Matias T S; Silva K S D;. (2019). Effect of a Multicomponent Intervention on Lifestyle Factors among Brazilian Adolescents from Low Human Development Index Areas: a Cluster-Randomized Controlled Trial. *International journal of environmental research and public health*, 16(2), pp.12.

Barffour M A, Hinnouho G M; Kounnavong S and Wessells K R; Ratsavong K ; Bounheuang B ; Chanthavong B ; Sithhideth D ; Sengnam K ; Arnold C D; Brown K H; Hess S Y;. (2019). Effects of daily zinc, daily multiple micronutrient powder, or therapeutic zinc supplementation for diarrhea prevention on physical growth, anemia, and micronutrient status in rural Laotian children: a randomized controlled trial.. *Journal of Pediatrics*, 207, pp.80-e2.
Barth-Jaeggi T, Moretti D and Kvalsvig J; Holding P A; Njenga J; Mwangi A; Chhagan M K; Lacroix C; Zimmermann M B; (2015). In-home fortification with 2.5 mg iron as NaFeEDTA does not reduce anaemia but increases weight gain: a randomised controlled trial in Kenyan infants. *Maternal & child nutrition*, 11 Suppl 4, pp.151-162.

Batra Payal, Schlossman Nina and Balan Ionela ; Pruzensky William ; Balan Adrian ; Brown Carrie ; Gamache Madeleine G; Schleicher Molly M; de Sa ; Augusto Braima ; Saltzman Edward ; Wood Lauren ; Roberts Susan B;. (2016). A Randomized Controlled Trial Offering Higher- Compared with Lower-Dairy Second Meals Daily in Preschools in Guinea-Bissau Demonstrates an Attendance-Dependent Increase in Weight Gain for Both Meal Types and an Increase in Mid-Upper Arm Circumference for the Higher-Dairy Meal.. *The Journal of nutrition*, 146(1), pp.124-32.

Bauserman M, Lokangaka A and Gado J ; Close K ; Wallace D ; Kodondi K ; Tshefu A ; Bose C ; (2015). A cluster-randomized trial determining the efficacy of caterpillar cereal as a locally available and sustainable complementary food to prevent stunting and anaemia.. *Public Health Nutrition*, 18(10), pp.1785-1792.

Beaman Lori, Karlan Dean and Thuysbaert Bram ; Udry Christopher ;. (2013). Profitability of Fertilizer: Experimental Evidence from Female Rice Farmers in Mali. , pp.pages.

Beaman Lori, Karlan Dean and Thuysbaert Bram ; Udry Christopher ;. (2014). Self-Selection into Credit Markets: Evidence from Agriculture in Mali. , , pp..

Benjeddou K, Qandoussi L and Mekkaoui B; Rabi B; El Hamdouchi A; Raji F; Saeid N; Belghiti H; Elkari K; Aguenaou H;. (2019). Effect of multiple micronutrient fortified milk consumption on vitamin D status among school-aged children in rural region of Morocco. Physiologie appliquée, nutrition et metabolisme [Applied physiology, nutrition and and metabolism], 44, pp.461-467.

Berg Marrit Van Den and Levely Ian. (2019). Does A Multi-Faceted Market-Based Approach To Food Crops Stimulate Food Security And Agricultural Development In Tanzania?. 3ie Grantee Final Report, Not applicable, pp.Not applicable-.

Greyce Luci Bernardo and Manuela Mika Jomori; Ana Carolina Fernandes; Claudia Flemming Colussi; Margaret D Cond asky; Rossana Pacheco da Costa Proença; (2017). Nutrition and Culinary in the Kitchen Intervention Program with university students. http://www.who.int/trialsearch/Trial2.aspx?TrialID=RBR-8nwxh5, , pp..

Berry J, Kartini Shastri G and Mukherjee P ; Ruebeck H ;. (2011). Improving Mid-day Meal Delivery and Encouraging Micronutrient Fortification to Reduce Anemia and Malnutrition among Children in India. : 3ie, pp.98. Available at: function URL() { [native code] }.

Bett B, Randolph T F and Irungu P ; Nyamwaro S O; Kitala P ; Gathuma J ; Grace D ; Vale G ; Hargrove J ; McDermott J ;. (2010). Field trial of a synthetic tsetse-repellent technology developed for the control of bovine trypanosomosis in Kenya. Preventive Veterinary Medicine, 97, pp.220-227.

Bezner Kerr, R and Kangmennaang J ; Dakishoni L ; Nyantakyi-Frimpong H ; Lupafya E ; Shumba L ; Msachi R ; Boateng G O; Snapp S S; Chitaya A ; Maona E ; Gondwe T ; Nkhonjera P ; Luginaah I ;. (2019). Participatory agroecological research on climate change adaptation improves smallholder farmer household food security and dietary diversity in Malawi. Agriculture and Ecosystems and Environment, 279, pp.109-121.

Bhandari N, Bahl R and Nayyar B ; Khokhar P ; Rohde J E; Bhan M K;. (2001). Food supplementation with encouragement to feed it to infants from 4 to 12 months of age has a small impact on weight gain. Journal of nutrition, 131, pp.1946-1951.

Bhandari Nita, Bahl Rajiv and Taneja Sunita ; Strand Tor ; Molbak Kare ; Ulvik Rune Johan; Sommerfelt Halvor ; Bhan Maharaj K; (2002). Substantial reduction in severe diarrheal morbidity by daily zinc supplementation in young north Indian children. Pediatrics, 109(6), pp.e86.

Bhandari Nita, Mazumder Sarmila and Bahl Rajiv ; Martines Jose ; Black Robert E; Bhan Maharaj K; Infant Feeding Study Group; (2005). Use of multiple opportunities for improving feeding practices in under-twos within child health programmes. Health policy and planning, 20(5), pp.328-36.

Billah S M, Ferdous T E; Karim M A; Dibley M J; Raihana S and Moinuddin M ; Choudhury N ; Ahmed T ; Hoque D M E; Menon P ; El-Arifeen S ;. (2017). A community-based cluster randomised controlled trial to evaluate the effectiveness of different bundles of nutrition-specific interventions in improving mean length-for-age z score among children at 24 months of age in rural Bangladesh: study protocol. BMC Public Health, 17(375), pp..

Bonvecchio Anabelle, Pelto Gretel H and Escalante Erika; Montrerrubio Erick; Habicht J P; Nava Fernanda; Villanueva Maria-Angeles; Safdie Margarita; Rivera J A; (2007). Maternal knowledge and use of a micronutrient supplement was improved with a programmatically feasible intervention in Mexico.. *Journal of Nutrition*, 137(2), pp.440-446.

Boonyasopun Umaporn, Aree Patcharaporn and Avant Kay C; (2008). Effect of an empowerment-based nutrition promotion program on food consumption and serum lipid levels in hyperlipidemic Thai elderly.. *Nursing & Health Sciences*, 10(2), pp.93-100.
Borah Prasanta K, Kalita Hem C; Paine Suman K; Khaund Purnananda and Bhattacharjee Chandra; Hazarika Dilip; Sharma Meenakshi; Mahanta Jagadish; (2018). An information, education and communication module to reduce dietary salt intake and blood pressure among tea garden workers of Assam. Indian Heart Journal, 70(2), pp.252-258.

Borg Bindi, Sok Daream and Mihrshahi Seema; Griffin Mark; Chamnan Chhoun; Berger Jacques; Laillou Arnaud; Roos Nanna; Wieringa Frank T.; (2020). Effectiveness of a locally produced ready-to-use supplementary food in preventing growth faltering for children under 2 years in Cambodia: a cluster randomised controlled trial. Maternal and Child Nutrition, 16(1), pp.e12896.

Bouhouc Raschida R, El-Fadeli Sana and Andersson Maria; Aboussad Abdelmounaim; Chabaa Laila; Zeder Christophe; Kippler Maria; Baumgartner Jeannine; Sedki Azzedine; Zimmermann Michael B; (2016). Effects of wheat-flour biscuits fortified with iron and EDTA, alone and in combination, on blood lead concentration, iron status, and cognition in children: a double-blind randomized controlled trial. American Journal of Clinical Nutrition, 104(5), pp.1318-1326.

Brito Beck da Silva K, Ortelan N and Giardini Murta S; Sartori I; Couto R D; Leovigildo Fiaccone R; Lima Barreto M; Jones Bell M; Barr Taylor C; Ribeiro-Silva R C.; (2019). Evaluation of the Computer-Based Intervention Program Stayingfit Brazil to Promote Healthy Eating Habits: the Results from a School Cluster-Randomized Controlled Trial. *International journal of environmental research and public health*, 16, pp..

Buller A M, Hidrobo M and Peterman A ; Heise L ;. (2016). The way to a man's heart is through his stomach?: a mixed methods study on causal mechanisms through which cash and in-kind food transfers decreased intimate partner violence. *BMC Public Health*, 16, pp.1-13.

Byrd K, Dentz H N and Williams A ; Kiprotich M ; Pickering A J; Omondi R ; Kwna O ; Gouthami R ; Arnold C D; Arnold B F; Dewey K G; Colford J M; Null C ; Stewart C P.; (2019). A behaviour change intervention with lipid-based nutrient supplements had little impact on young child feeding indicators in rural Kenya.. Maternal and Child Nutrition, 15(1), pp.e12660.

Cabala A B, Tengco L W; Solon J A; Sarol J N; Rayco-Solon P and Solon F S; Cabalda A B; Tengco L W; Solon J A A; Sarol J N; Rayco-Solon P ; Solon F S.; (2009). Efficacy of pandesal baked from wheat flour fortified with iron and vitamin a in improving the iron and anthropometric status of anemic schoolchildren in the Philippines. Journal of the American College of Nutrition, 28, pp.591-600.

Camacho Adriana and Conover Emily . (2019). The impact of receiving SMS price and weather information on small scale farmers in Colombia. World Development (Oxford), 123, pp..

Cao JiaoYang, Wei XiaoPing and Tang XianQiang ; Jiang HongPeng ; Fan Zhen ; Yu Qin ; Chen Jie ; Liu YouXue ; Li TingYu ;. (2013). Effects of egg and vitamin A supplementation on hemoglobin, retinol status and physical growth levels of primary and middle school students in Chongqing, China.. *Asia Pacific Journal of Clinical Nutrition*, 22(2), pp.214-221.

Cardoso M A and Augusto R A; Bortolini G A; Oliveira C S M; Tietzman D C; Sequeira L A S; Hadler M C C M; Peixoto M R G; Muniz P T; Vitolo M R; Lira P I C; Jaime P C;. (2016). Effect of providing multiple micronutrients in powder through primary healthcare on anemia in young Brazilian children: a multicentre pragmatic controlled trial.. *PLoS ONE*, 11(3), pp.e0151097.

Casaburi L, Glennerster R and Suri T; Kamara S; (2012). *The Impact of an Inventory Credit Program on Palm Oil Farmers in Sierra Leone*. [online]. Available at: function URL() { [native code] }.

Castillo-Duran C, Marin V B and Alcazar L S; Iturralde H; Ruz M O; (2001). Controlled trial of zinc supplementation in Chilean pregnant adolescents. . , pp..

Caudell M A, Charoonsophonsak P V; Miller A and Lyimo B; Subbiah M; Buza J; Call D R; (2019). Narrative risk messages increase uptake and sharing of health interventions in a hard-to-reach population: a pilot study to promote milk safety among Maasai pastoralists in Tanzania.. *Pastoralism: Research and Policy and Practice*, 9(7), pp..

Cerculon Colin I, Egli Ines M; Mitchikpe Evariste and Tossou Felicien; Hessou Joamel; Zeder Christophe; Hounhouigan Joseph D; Hurrell Richard F; (2013). Iron bioavailability from a lipid-based complementary food fortificant mixed with millet porridge can be optimized by adding phytase and ascorbic acid but not by using a mixture of ferrous sulfate and sodium iron EDTA.. *Journal of nutrition*, 143(8), pp.1233-1239.

Chagas Carolina Martins dos Santos and Pontes e Silva Tiago Barros; Reffatti Luiggi Monteiro; Botelho Raquel Braz Assunção; Toral Natacha. (2018). Rango Cards, a digital game designed to promote a healthy diet: a randomized study protocol. BMC Public Health, 18(910), pp..

Chen Juan, Tian Ye and Liao YiXing ; Yang ShuaiShuai ; Li ZhuoTing ; He Chao ; Tu DaHong ; Sun XinYing ;. (2013). Salt-restriction-spoon improved the salt intake among residents in China. *PLoS ONE*, 8(11), pp.e78963.

Chhagan M K, Van den Broeck J and Luabeya K K; Mpontshane N ; Tomkins A ; Bennish M L;. (2010). Effect on longitudinal growth and anemia of zinc or multiple micronutrients added to vitamin A: a randomized controlled trial in children aged 6-24 months. , , pp..

Chiputwa B, Wainaina P and Makui P; Nakelse T; Zougmoré R; Ndiaye O.; (2018). Evaluating the Impact of the Multidisciplinary Working Group Model on Farmers’ Use of Climate Information Services in Senegal. , , pp..

Chirwa E, Matita M and Mvula P; Dorward A ;. (2011). Impacts of the Farm Input Subsidy Programme in Malawi. , , pp..

Choudhury D R, Nair K M; Balakrishna N and Radhakrishna K V; Ghosh S ; Rao S F; (2019). A food synergy approach in a national program to improve the micronutrient status of preschoolers: a randomized control trial protocol.. *Annals reports.*, 1438, pp.40-49.

Christopher Duggan, Krishnamachari Srinivasan and Tinku Thomas; Tinu Samuel; Ramya Rajendran; Sumithra Muthayya; Finkelstein J L; Ammu Lukose; Fawzi W; Allen L H; Bosch R J; Kurpad A V;. (2014). Vitamin B-12 supplementation during pregnancy and early lactation increases maternal, breast milk, and infant measures of vitamin B-12 status. *Journal of Nutrition*, 144(5), pp.758-764.

Coelho Cidéli de Paula and Soto Francisco Rafael Martins; Vuaden Erlete Rosalina; Melville Priscilla Anne; Oliveira Flávia Carolina Souza; Benites Nilson Roberti;. (2009). Evaluation of preventive homeopathic treatment against Colibacillosis in swine production. *Int. j. high dilution res*, 8, pp..

Colchero M Arantxa and Popkin Barry M; Rivera Juan A; Ng Shu Wen;. (2016). Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study. *The BMJ*, 352(H6704), pp..

Conceicao de Oliveira Maria, Sichieri Rosely and Sanchez Moura Anibal; (2003). Weight loss associated with a daily intake of three apples or three pears among overweight women.. *Nutrition (Burbank, Los Angeles County and Calif.)*, 19(3), pp.253-6.

Cooper W N, Khulan B and Owens S ; Elks C E; Seidel V ; Prentice A M; Belteki G ; Ong K K; Affara N A; Constancla M; Dunger D B;. (2012). DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial.. *FASEB Journal*, 26(5), pp.1782-1790.

Costa de Oliveira, Sheyla and Carvalho Fernandes ; Ana Fátima ; Ribeiro de Vasconcelos; Eliane Maria ; Barbosa Ximenes ; Lorena ; Pedrosa Leal ; Luciana ; Tenório Souza Cavalcanti; Ana Marcia ; de Oliveira Lopes ; Marcos Venícios.; (2018). Effect of an educational intervention on pregnancy: a cluster-randomized clinical trial. *Acta Paulista de Enfermagem*, 31, pp.291-298.

Coutinho G G P L and Cury P M; Cordeiro J A;. (2013). Cyclic iron supplementation to reduce anemia among Brazilian preschoolers: a randomized controlled trial.. *BMC Public Health*, 13(21), pp..

Cunha D B, de Souza B and Pereira R A; Sichieri R; (2013). Effectiveness of a Randomized School-Based Intervention Involving Families and Teachers to Prevent Excessive Weight Gain among Adolescents in Brazil. , , pp..

Cunha Diana Barbosa and Junior Eliseu Verly; Paravidino Vitor Barreto; Araújo Marina Campos; Mediano Mauro Felippe Felix; Sgambato Michele Ribeiro; da Silva Nalin de Souza Bárbara; Marques Emanuele Souza; Baltar Valéria Troncoso; de Oliveira Alessandra Silva Dias; da Silva Ana Carolina Feldenheimer; Pérez-Cueto Federico J; Pereira Rosangela Alves; Sichieri Rosely. (2017). Design of a school randomized trial for nudging students towards healthy diet and physical activity to prevent obesity: PAAPAS Nudge study protocol. *Medicine*, 96(50), pp.1-5.

Dai X, Pu L and Rao F; (2017). Assessing the effect of a crop-tree intercropping program on smallholders' incomes in rural Xinjiang, China. *Sustainability (Switzerland)*, 9, pp..

Daidone S, Davis B and Knowles M; Pickmans R; Pace N; H; a S; (2017). The Social Cash Transfer Programme and the Farm Input Subsidy Programme in Malawi. , , pp..

Dangour A D, Albala C and Allen E; Grundy E; Walker D G; Aedo C; Sanchez H; Fletcher O; Elbourne D; Uauy R; (2011). Effect of a nutrition supplement and physical activity program on pneumonia and walking capacity in Chilean older people: a factorial cluster randomized trial.. *PLoS Medicine*, 8(4), pp.e1001023.

Dantas Marcia Marilla Gomes and Rocha Erika Dantas Medeiros; Brito Naira Josele Neves; Alves Camila Xavier; Franca Mardone Cavalcante; Almeida Maria das Gracas; Brandao-Neto Jose. (2015). Bioelectrical impedance vector analysis for evaluating zinc supplementation in prepubertal and healthy children.. *Food & Nutrition Research*, 59, pp..

Dar M H, De Janvry A and Emerick K ; Raitzer D ; Sadoulet E ; Raitzer D ; Sadoulet E ; Darboe M K, Thurnham D I; Morgan G and Adegbola R A; Secka O ; Solon J A; Jackson S J; Northrop-Clewes C ; Fulford T J; Doherty C P; Prentice A M; (2007). Effectiveness of an early supplementation scheme of high-dose vitamin A versus standard WHO protocol in Gambian mothers and infants: a randomised controlled trial.. *Lancet (British edition)*, 369(9579), pp.2088-2096.

Darling A M, Mugusi F M; Etheredge A J; Gunaratna N S; Abioye A I; Aboud S and Duggan C ; Mongi R ; Spiegelman D ; Roberts D ; Hamer D H; Kain K C; Fawzi W W.; (2017). Vitamin A and zinc supplementation among pregnant women to prevent placental malaria: a randomized, double-blind, placebo-controlled trial in Tanzania.. *American Journal of Tropical Medicine and Hygiene*, 96(4), pp.826-834.

Dehdari Tahereh, Yekehfallah Fereshteh and Rahimzadeh Mitra ; Aryaeian Naheed ; Rahimi Tahereh ;. (2016). Dairy Foods Intake among Female Iranian Students: A Nutrition Education Intervention Using a Health Promotion Model.. *Global journal of health science*, 8(10), pp.54893.

Del Carpio Ximena, Datar Gayatri and Gutierrez Gustavo ; Velez-Vega Pamela ;;. (2010). Evaluating the impact on farm households: a multicomponent irrigation program in Peru. : World Bank Independent Evaluation Group, pp.. Available at: function URL() { [native code] }.

Del Prete Davide, Ghins Leopold and Magrini Emiliano; Pauw Karl; (2019). Land Consolidation, Specialization and Household Diets: Evidence from Rwanda. *Food Policy*, 83(0), pp.139-49.

Delavallade Clara and Godlonton Susan; (2015). *The Impact of Inventory Credit on Food Security and Rural Livelihoods in Burkina Faso*. , pp.3. Available at: function(URL() { [native code] }).

Delimont Nicole M, Vahl Christopher I; Kayanda Rosemary and Msuya Wences; Mulford Michael; Alberghine Paul; Praygod George; Mngara Julius; Alavi Sajid; Lindsey Brian L.; (2019). Complementary Feeding of Sorghum-Based and Corn-Based Fortified Blended Foods Results in Similar Iron, Vitamin A, and Anthropometric Outcomes in the MFFAPP Tanzania Efficacy Study.. *Current developments in nutrition*, 3(6), pp..

Deshmukh U S, Joglekar C V; Lubree H G; Ramdas L V; Bhat D S; Naik S S; Hardikar P S; Raut D A; Konde T B; Wills A K; Jackson A A; Refsum H and Nanivadekar A S; Fall C H; Yajnik C S.; (2010). Effect of physiological doses of oral vitamin B12 on plasma homocysteine: a randomized, placebo-controlled, double-blind trial in India.. *European Journal of Clinical Nutrition*, 64(5), pp.495-502.

Diagne Abdolaye, Solaroli Laura and Ba Abdolaye ;. (2017). PAA Africa programme in Senegal’s Kédoougou region. , , pp..

Diaw Adama and Diagne Aliou . (2017). Impact evaluation of the Matam development project (PRODAM) II extension in Senegal on household income, food security and employment. : , pp.. Available at: function URL() { [native code] }.

Diogenes Maria Eduarda L and Bezerra Flavia F; Rezende Elaine P; Donangelo Carmen M; . (2015). Calcium plus vitamin D supplementation during the third trimester of pregnancy in adolescents accustomed to low calcium diets does not affect infant bone mass at early lactation in a randomized controlled trial.. Journal of Nutrition, 145(7), pp.1515-1523.

Dione Michel Mainack, Dohoo Ian and Ndiwa Nicholas ; Poole Jane ; Ouma Emily ; Amia Winfred Christine; Wieland Barbara ;. (2020). Impact of participatory training of smallholder pig farmers on knowledge, attitudes and practices regarding biosecurity for the control of African swine fever in Uganda.. Transboundary and emerging diseases, , pp..

Reinbott A. (2016). *Effectiveness of a nutrition education intervention to improve complementary feeding practices: a randomized trial in Cambodia.*

Dube Laurette, McRae Cameron and Wu Yun-Hsuan ; Ghosh Samik ; Allen Summer ; Ross Daniel ;. (2020). Impact of the eKutir ICT-Enabled Social Enterprise and Its Distributed Micro-entrepreneur Strategy on Fruit and Vegetable Consumption: A Quasi-experimental Study in Rural and Urban Communities in Odisha, India. *Food Policy*, 90(0), pp..

Dutta Ambarish, Srinivas Nallala and Rout Sarit Kumar; Pradhan Ashirbad ; Sundari Shyama ;. (2019). *Assessment of fortification of Mid-Day Meal Programme in Dhenkanal, Odisha. WFP, Public Health Foundation of India (PHFI)/ Indian Institute of Public Health, Bhubaneswar (IIPH) : World Food Program, pp.. Available at: function URL() { [native code] }.

Egbi Godfred, Ayi Irene and Saalia Firiobu Kwesi; Zotor Francis ; Adom Theodosia ; Harrison Eric ; Ahorlu Collins K; Steiner-Asiedu Matilda ;. (2015). Impact of Cowpea-Based Food Containing Fish Meal Served With Vitamin C-Rich Drink on Iron Stores and Hemoglobin Concentrations in Ghanaian Schoolchildren in a Malaria Endemic Area.. Food and nutrition bulletin, 36(3), pp.264-75.

Egziabher Kidanemariam G, Mathijs Erik and Deckers Jozef A; Gebrehiwot Kindeya ; Bauer Hans ; Maertens Miet ;. (2013). The Economic Impact of a New Rural Extension Approach in Northern Ethiopia. : Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.

Eilander Ans, Funke Olumakaiye M and Moretti Diego ; Zimmermann Michael B; Owojuygbe Temilola O; Blonk Cor ; Murray Peter ; Duchateau Guus S.; (2019). High Bioavailability from Ferric Pyrophosphate-Fortified Bouillon Cubes in Meals is Not Increased by Sodium Pyrophosphate: a Stable Iron Isotope Study in Young Nigerian Women. Journal of Nutrition, 149(5), pp.723-729.

Ek A, Nystrom C D and Chirita-Emandi A ; Tur J A; Nordin K ; Bouzas C ; Argelich E ; Martinez J A; Frost G ; Garcia-Perez I ; Saez M ; Paul C ; Lof M ; Nowicka P ;. (2019). A randomized controlled trial for overweight and obesity in preschoolers: the More and Less Europe study - an intervention within the STOP project.. BMC Public Health, 19(945), pp..

Ekstrom Eva Charlotte, Hyder S M Ziauddin; Chowdhury A Mushtaque; Chowdhury Sadia A; Lönnerdal Bo and Habicht Jean-Pierre ; Persson Lars Ake;.. (2002). Efficacy and trial effectiveness of weekly and daily iron supplementation among pregnant women in rural Bangladesh: disentangling the issues . American Journal of Clinical Nutrition, 76(6), pp.1392-1400.

Ekstrom E C, Lindstrom E and Rubhana R ; El-Arifeen S ; Basu S ; Brismar K ; Selling K ; Persson L A;.. (2016). Effects of prenatal micronutrient and early food supplementation on metabolic status of the offspring at 4.5 years of age. The MINIMat randomized trial in rural Bangladesh.. International Journal of Epidemiology, 45(5), pp.1656-1667.

Guevarra Ernest, Mandalazi Emmanuel and Balegamire Safari; Albrektsen Kristine; Sadler Kate; Abdelsalam Khalid; Urrea Gloria; Alawad Salma.; (2018). *Impact evaluation of the World Food Programme’s moderate acute malnutrition treatment and prevention programmes in Sudan*. New Delhi, India: International Initiative for Impact Evaluation (3ie), pp.. Available at: function URL() { [native code] }.

Aguilar Estava Arturo, Gutierrez Emilio and Seira Enrique; (2019). The Effectiveness of Sin Food Taxes: Evidence from Mexico. *SSRN*, , pp..

Etheredge A J, Premji Z and Gunaratna N S; Abioye A I; Aboud S; Duggan C; Mongi R; Meloney L; Spiegelman D; Roberts D; Hamer D H; Fawzi W W; (2015). Iron Supplementation in Iron-Replete and Nonanemic Pregnant Women in Tanzania: A Randomized Clinical Trial. , , pp..

Fafchamps M and Minten B. (2010). The Impact of SMS-Based Agricultural Information on Economic Benefits to Farmers in India. , , pp..

Fahmida Umi, Johanna S P Rumawas, Budi Utomo, Soemiarti Patmonodewo and Wern. (2007). Zinc-iron, but not zinc-alone supplementation, increased linear growth of stunted infants with low haemoglobin. , , pp..

Falahi E, Akbari S and Ebrahimzade F; Gargari B P; (2011). Impact of prophylactic iron supplementation in healthy pregnant women on maternal iron status and birth outcome. , , pp..

Fenn Bridget, Bulti Assaye T and Nduna Themba ; Duffield Arabella ; Watson Fiona ;. (2012). An evaluation of an operations research project to reduce childhood stunting in a food-insecure area in Ethiopia.. Public Health Nutrition, 15(9), pp.1746-1754.

Fenn B, Colbourn T and Dolan C ; Pietzsch S ; Sangrasi M ; Shoham J ;. (2017). Impact evaluation of different cash-based intervention modalities on child and maternal nutritional status in Sindh Province, Pakistan, at 6 mo and at 1 y: a cluster randomised controlled trial. PLoS medicine, 14, pp.e1002305.

Fernald L C. H, Galasso E and Qamruddin J; Ranaivoson C; Ratsifandrihamananana L; Stewart C P; Weber A M;. (2016). A cluster-randomized, controlled trial of nutritional supplementation and promotion of responsive parenting in Madagascar: the MAHAY study design and rationale.. *BMC Public Health*, 16(466), pp..

Filteau Suzanne, Baisley Kathy and Chisenga Molly ; Kasonka Lackson ; Gibson Rosalind S; CIGNIS Study Team;. (2011). Provision of micronutrient-fortified food from 6 months of age does not permit HIV-exposed uninfected Zambian children to catch up in growth to HIV-unexposed children: a randomized controlled trial.. *Journal of acquired immune deficiency syndromes*, 56(2), pp.166-75.

Fiorella Kathryn J, Gavenus Erika R; Milner Erin M; Moore Megan and Wilson-Anumudu Folasade ; Adhiambo Florida ; Mattah Brian ; Bukusi Elizabeth ; Femald Lia C. H.; (2019). Evaluation of a social network intervention on child feeding practices and caregiver knowledge.. *Maternal and Child Nutrition*, 15(3), pp..

Fleddermann M, Demmelmair H and Grote V; Nikolic T; Trisic B; Koletzko B.; (2014). Infant formula composition affects energetic efficiency for growth: The BeMIM study, a randomized controlled trial. , , pp..

Flores M L, Neufeld L M; Gonzalez-Cossio T and Rivera J; Martorell R; Ramakrishnan U.; (2007). Multiple micronutrient supplementation and dietary energy intake in pregnant women.. Salud Publica de Mexico, 49(3), pp.190-198.

Flores-Aldana Mario. (2018). Effect of Vitamin D3 Supplementation in Children From 12 to 30 Months of Age. , , pp..

Forde Ian, Chandola Tarani and Garcia Sandra; Marmot Michael G; Attanasio Orazio.; (2012). The impact of cash transfers to poor women in Colombia on BMI and obesity: prospective cohort study.. International Journal of Obesity, 36(9), pp.1209-1214.

Fottrell E, Azad K and Kuddus A; Younes L; Shaha S; Nahar T; Aumon B H; Hossen M; Beard J; Hossain T; Pulkkki-Brannstrom A M; Skordis-Worrall J; Prost A; Costello A; Houweling T A J.; (2013). The effect of increased coverage of participatory women's groups on neonatal mortality in Bangladesh: a cluster randomized trial.. JAMA Pediatrics, 167(9), pp.816-825.

Fotu K F, Millar L and Mavoa H; Kremer P; Moodie M; Snowdon W; Utter J; Vivili P; Schultz J T; Malakellis M; McCabe M P; Roberts G; Swinburn B A.; (2011). Outcome results for the Ma'alahi Youth Project, a Tongan community-based obesity prevention programme for adolescents.. Obesity Reviews. Special Issue: The Pacific Obesity Prevention In Communities Project (OPIC)., 12(s2), pp.41-50.

Frongillo Edward A, Nguyen Phuong H; Saha Kantal K; Sanghvi Tina and Afsana Kaosar ; Haque Raisul; Baker Jean; Ruel Marie T; Rawat Rahul; Menon Purnima ;. (2017). Large-Scale Behavior-Change Initiative for Infant and Young Child Feeding Advanced Language and Motor Development in a Cluster-Randomized Program Evaluation in Bangladesh.. *The Journal of nutrition*, 147(2), pp.256-263.

Fuleihan G E, Nabulsi M and Tamim H ; Maalouf J ; Salamoun M ; Khalife H ; Choucair M ; Arabi A ; Vieth R . (2006). Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial.. *Journal of Clinical Endocrinology & Metabolism*, 91(2), pp.405-412.

Gabiola J, Morales D and Quizon O ; Cadiz R I; Feliciano K ; Ruiz R L; Aguatis C J; Mararac T ; Rojina J ; Garcia A ; Hedlin H ; Cullen M ; Palaniappan L ;. (2020). The EffectiveNess of Lifestyle with Diet and Physical Activity Education ProGram Among Prehypertensives and Stage 1 HyperTENsives in an Urban Community Setting (ENLIGHTEN) Study. *Journal of Community Health*, 45, pp.478-487.

Galpin Lauren, Thakwalakwa Chrissie and Phuka John; Ashorn Per; Maleta Ken; Wong William W; Manary Mark J.; (2007). Breast milk intake is not reduced more by the introduction of energy dense complementary food than by typical infant porridge.. The Journal of nutrition, 137(7), pp.1828-33.

Gao YongQing, Huang Yuee and Zhang YongJun; Liu FengQiong; Feng Xin [Feng; X C]; Liu TingTing; Li ChangWei; Lin DongDong; Mu YongPing; Tarver S L; Wang Mao; Sun WenJie; (2014). Evaluation of fast food behavior in pre-school children and parents following a one-year intervention with nutrition education.. International Journal of Environmental Research and Public Health, 11(7), pp.6780-6790.

Gelli A, Becquey E and Ganaba R; Headey D; Hidrobo M; Huybregts L; Verhoeof H; Kenfack R; Zongouri S; Guedenet H;.. (2017). Improving diets and nutrition through an integrated poultry value chain and nutrition intervention (SELEVER) in Burkina Faso: study protocol for a randomized trial.. *Trials*, 18(1), pp.412.

Gelli Aulo, Aurino Elisabetta and Folson Gloria; Arhinful Daniel; Adamba Clement; Osei-Akoto Isaac; Masset Edoardo; Watkins Christie; Fernandes Meena; Drake Lesley; Alderman Harold;.. (2019). A School Meals Program Implemented at Scale in Ghana Increases Height-for-Age during Midchildhood in Girls and in Children from Poor Households: A Cluster Randomized Trial. *Journal of Nutrition*, 149(8), pp.1434-1442.

Gerber Markus, Ayekoe Serge A and Beckmann Johanna; Bonfoh Bassirou; Coulibaly Jean T; Daouda Dao; du Randt Rosa; Finda Lina; Gall Stefanie; Mollal Getrud J; Lang Christin; Long Kurt Z; Ludyga Sebastian; Masanja Honorati; Müller Ivan; Nqweniso Siphesihle; Okumu Fredros; Probst-Hensch Nicole; Pühse Uwe; Steinmann Peter; Traoré Sylvain G; Walter Cheryl; Utzinger Jürg;.. (2020). Effects of school-based physical activity and multi-micronutrient supplementation intervention on growth, health and well-being of schoolchildren in three African countries: the KaziAfya cluster randomised controlled trial protocol with a 2 × 2 factorial design. *Trials*, 21, pp..

[native code] }

92

Ghaffari Mohtasham, Rakhshanderou Sakineh and Mehrabi Yadollah ; Ramezankhani Ali ; Shahbazzadegan Bita ;. (2019). Effect of theory-based environmental-behavioral interventions with student-family-school approach on fruit and vegetable consumption among the adolescents.. *Crescent Journal of Medical and Biological Sciences*, 6(3), pp.300-308.

Ghesh S A, Strutt N R; Otoo G E; Suri D J; Ankrah J and Johnson T; Nsiah P; Furuta C; Murakami H; Perera G; Chui Kenneth; Bomfah Kennedy; Amonoo-Kuofi Harold; Tano-Debrah Kwaku; Uauy Ricardo; (2019). A macro- and micronutrient-fortified complementary food supplement reduced acute infection, improved haemoglobin and showed a dose-response effect in improving linear growth: a 12-month cluster randomised trial. *Journal of nutritional science*, 8, pp.e22.

Gibson R S, Kafwembe E and Mwanza S; Gosset L; Bailey K B; Mullen A; Baisley K; Filteau S; Gibson Rosalind S; Kafwembe Emmanuel; Mwanza Sydney; Gosset Laura; Bailey Karl B; Mullen Anne; Baisley Kathy; Filteau Suzanne; (2011). A micronutrient-fortified food enhances iron and selenium status of Zambian infants but has limited efficacy on zinc. *Journal of Nutrition*, 141, pp.935-943.

94

Giovannini M, Sala D and Usuelli M; Livio L; Francescato G; Braga M; Radaelli G; Riva E; (2006). Double-blind, placebo-controlled trial comparing effects of supplementation with two different combinations of micronutrients delivered as sprinkles on growth, anemia, and iron deficiency in cambodian infants. *Journal of Pediatric Gastroenterology and Nutrition,* 42, pp.306/312.

Girard A W, Grant F and Watkinson M; Okuku H S; Wanjala R; Cole D; Levin C; Low J; (2017). Promotion of orange-fleshed sweet potato increased vitamin A intakes and reduced the odds of low retinol-binding protein among postpartum Kenyan women. *Journal of Nutrition,* 147(5), pp.955-963.

Githiomi Caroline, Muriithi Beatrice and Irungu Patrick; Mwungu Chris M; Diro Gracious; Affognon Hippolyte; Mburu John; Ekesi Sunday; (2019). Economic analysis of spillover effects of an integrated pest management (IPM) strategy for suppression of mango fruit fly in Kenya. *Food Policy,* 84, pp.121-132.

Gomo E, Filteau S M and Tomkins A M; Ndhlovu P ; Michaelsen K F; Friis H ;. (2003). Subclinical mastitis among HIV-infected and uninfected Zimbabwean women participating in a multimicronutrient supplementation trial.. Transactions of the Royal Society of Tropical Medicine and Hygiene, 97(2), pp.212-216.

Carolina González Acero 1 and Sebastian Martinez 2; Ana Pérez-Expósito 1; Solis Winters 3;.. (2020). Effect of an innovative behavioural change strategy and small-quantity lipid-based nutrient supplements on stunting and obesity in children in Baja Verapaz, Guatemala: protocol for a randomised control trial. BMJ Open, , pp..

Gonzalez-Casanova I, Stein A D and Hao W ; Garcia-Feregrino R ; Barraza-Villarreal A ; Romieu I ; Rivera J A; Martorell R ; Ramakrishnan U ;. (2015). Prenatal Supplementation with Docosahexaenoic Acid Has No Effect on Growth through 60 Months of Age. Journal of nutrition, 145, pp.1330-1334.

Goodarzi-Khoigani Masoomeh, Baghiani Moghadam and Mohammad Hossein; Nadjarzadeh Azadheh ; Mardanian Farahnaz ; Fallahzadeh Hossein ; Mazloom-Mahmoodabad SeyedSaeed ;. (2018). Impact of Nutrition Education in Improving Dietary Pattern During Pregnancy Based on Pender's Health Promotion Model: A Randomized Clinical Trial.. *Iranian journal of nursing and midwifery research*, 23(1), pp.18-25.

Gram L, Morrison J and Saville N ; Yadav S S; Shrestha B ; Manandhar D ; Costello A ; Skordin-Worrall J ;. (2019). Do Participatory Learning and Action Women's Groups Alone or Combined with Cash or Food Transfers Expand Women's Agency in Rural Nepal?. *Journal of Development Studies*, 55(8), pp.1670-1686.

Ara G, Sanin K I and Khanam M ; Sarker S A; Khan S S; Mahfuza Rifat ; Chowdhury l A; Askari S ; Afsana K ; Ahmed T ;. (2019). Study protocol to assess the impact of an integrated nutrition intervention on the growth and development of children under two in rural Bangladesh.. *BMC Public Health*, 19(1437), pp..

Fakhar G. (2018). Effectiveness of Multiple Micro-nutrient Fortified Fudge on Nutritional Status of 3-5 Years of Age Children. *Cochrane Central Register of Controlled Trials*, 2018(5), pp..

Gunaratna N S, Masanja H and Mrema S ; Levira F ; Spiegelman D ; Hertzmark E ; Saronga N ; Irema K ; Shuma M ; Elisaria E ; Fawzi W ;. (2015). Multivitamin and iron supplementation to prevent periconceptional anemia in rural Tanzanian women: a randomized, controlled trial.. *PLoS ONE*, 10(4), pp.e0121552.

Gupta S, Kumar N and Menon P ; Pandey S ; Raghunathan K ;. (2019). Engaging women’s groups to improve nutrition: Findings from an evaluation of the Jeevika multisectoral convergence pilot in Saharsa, Bihar. ; , pp.205. Available at: function URL() { [native code] }.

Haas Jere D, Rahn Maike and Venkatramanan Sudha ; Marquis Grace S; Wenger Michael J; Murray-Kolb Laura E; Wesley Annie S; Reinhart Gregory A;: (2014). Double-fortified salt is efficacious in improving indicators of iron deficiency in female Indian tea pickers. *Journal of Nutrition*, 144(6), pp.957–964.

Haiquan Xu, Olivier Ecker and Qian Zhang ; Songming Du ; Ailing Liu ; Yanping Li ; Xiaoqi Hu ; Tingyu Li ; Hongwei Guo ; Ying Li ; Guifa Xu ; Weijia Liu ; Jun Ma ; Junmao Sun ; Kevin Chen ; Guansheng Ma ;. (2020). The effect of comprehensive intervention for childhood obesity on dietary diversity among younger children: Evidence from a school-based randomized controlled trial in China. , , pp..

Hall A, Roschnik N and Ouattara F ; Toure I ; Maiga F ; Sacko M ; Moestue H ; Bendech M A.; (2002). A randomised trial in Mali of the effectiveness of weekly iron supplements given by teachers on the haemoglobin concentrations of schoolchildren. , , pp..

Hambidge K Michael, Westcott Jamie E; Garces Ana and Figueroa Lester ; Goudar Shivaprasad S; Dhaded Sangappa M; Pasha Omrana ; Ali Sumera A; Tshefu Antoinette ; Lokangaka Adrien ; Derman Richard J; Goldenberg Robert L; Bose Carl L; Bauserman Melissa ; Koso-Thomas Marion ; Thorsten Vanessa R; Sridhar Amaanti ; Stolka Kristen ; Das Abhik ; McClure Elizabeth M; Krebs Nancy F.;. (2019). A multicountry randomized controlled trial of comprehensive maternal nutrition supplementation initiated before conception: the Women First trial. *American Journal of Clinical Nutrition*, 109(2), pp.457-469.

Hanieh S, Ha T T and Simpson J A; Braat S ; Thuy T T; Tran T D; King J ; Tran T ; Fisher J ; Biggs B A.; (2017). Effect of low-dose versus higher-dose antenatal iron supplementation on child health outcomes at 36 months of age in Viet Nam: longitudinal follow-up of a cluster randomised controlled trial. *BMJ Global Health*, 2(3), pp.e000368.

Harris-Fry H A, Kishwar Azad and Younes L; Abdul Kuddus; Sanjit Shaha; Tasmin Nahar; Munir Hossen; Costello A; Fottrell E. (2016). Formative evaluation of a participatory women's group intervention to improve reproductive and women's health outcomes in rural Bangladesh: a controlled before and after study. *Journal of Epidemiology & Community Health*, 70(7), pp.663-670.

Harris-Fry Helen A, Paudel Puskar and Harrisson Tom; Shrestha Niva; Jha Sonali; Beard B James; Copas Andrew; Shrestha Bhim P; Manandhar Dharma S; Costello Anthony M. de L; Cortina-Borja Mario; Saville Naomi M. (2018). Participatory Women's Groups with Cash Transfers Can Increase Dietary Diversity and Micronutrient Adequacy during Pregnancy, whereas Women's Groups with Food Transfers Can Increase Equity in Intrahousehold Energy Allocation. *Journal of Nutrition*, 148(9), pp.1472-1483.

He F J, Wu Y and Feng X X; Ma J; Ma Y; Wang H; Zhang J; Yuan J; Lin C P; Nowson C; Macgregor G A; (2015). School Based Education Programme To Reduce Salt Intake In Children And Their Families (School-Edusalt): Cluster Randomised Controlled Trial. *British Medical Journal (BMJ)*, 350, pp..

He F J, Zhang PuHong and Luo Rong; Li Yuan; Chen FengGe; Zhao YuHong; Zhao Wei; Li DaoXi; Chen Hang; Wu TianYong; Yao JianYun; Li JinBao; Zhou SiYuan; Liu Yu; Li Xian; Wang ChangQiong; MacGregor G A; (2019). An application-based programme to reinforce and maintain lower salt intake (AppSalt) in schoolchildren and their families in China.. *BMJ Open*, 9, pp.e027793.

Hernandez-Cordero Sonia, Barquera Simon and Rodriguez-Ramirez Sonia ; Villanueva-Borbolla Maria Angeles; Gonzalez de Cossio Teresa; Rivera Dommarco Juan; Popkin Barry ; (2014). Substituting water for sugar-sweetened beverages reduces circulating triglycerides and the prevalence of metabolic syndrome in obese but not in overweight Mexican women in a randomized controlled trial. *Journal of Nutrition*, 144(11), pp.1742-1752.

Hieu N T, Sandalinas F and De Sesmaisons A; Laillou A; Tam N P; Khan N C; Bruyeron O; Wieringa F T; Berger J (2012). Multi-micronutrient-fortified biscuits decreased the prevalence of anaemia and improved iron status, whereas weekly iron supplementation only improved iron status in Vietnamese school children. British Journal of Nutrition, 108(8), pp.1419-1427.

Hill Ruth Vargas, Kumar Neha and Magnan Nicholas; Makhija Simrin; de Nicola Francesca; Spielman David J; Ward Patrick S; (2019). Ex ante and ex post effects of hybrid index insurance in Bangladesh. Journal of development economics, 136, pp.1-17.

Hotz Christine, Porcayo Maribel and Onofre German ; Garcia-Guerra Armando ; Elliott Terry ; Jankowski Shirley ; Greiner Ted ;. (2008). Efficacy of iron-fortified Ultra Rice in improving the iron status of women in Mexico.. *Food and nutrition bulletin*, 29(2), pp.140-9.

Hotz Christine, Loechl Cornelia and Lubowa Abdelrahman ; Tumwine James K; Ndeeki Grace ; Masawi Agnes Nandutu; Baingana Rhona ; Carriquiry Alicia ; de Brauw Alan ; Meenakshi Jonnalagadda V; Gilligan Daniel O.;. (2012). Introduction of beta -carotene-rich orange sweet potato in rural Uganda resulted in increased vitamin A intakes among children and women and improved vitamin A status among children.. *Journal of Nutrition*, 142(10), pp.1871-1880.

Hotz C, Loechl C and de Brauw A ; Eozenou P ; Gilligan D ; Moursi M ; Munhua B ; van Jaarsveld P ; Carriquiry A ; Meenakshi J V.;. (2012). A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women.. *British Journal of Nutrition*, 108(1), pp.163-176.

Huang Tao, Li KeLei and Asimi S; Chen Qi; Li Duo; (2015). Effect of vitamin B-12 and n-3 polyunsaturated fatty acids on plasma homocysteine, ferritin, C-reactive protein, and other cardiovascular risk factors: a randomized controlled trial.. *Asia Pacific Journal of Clinical Nutrition*, 24(3), pp.403-411.

Huang D, Pan Z and Qiu X; (2019). Effects of Application of BB Fertilizer on the Yield, Quality and Economic Benefits of Citrus. In: ... Available at: function URL() { [native code] }.

Humphrey J H, Mbuya M N N; Ntozini R and Moulton L H; Stoltzfus R J; Tavengwa N V; Mutasa K; Majo F; Mutasa B; Mangwadu G; Chasokela C M; Chigumira A; Chasekwa B; Smith L E; Tielsch J M; Jones A D; Manges A R; Maluccio J A; Prendergast A J; Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team; (2019). Independent and combined effects of improved WASH and improved complementary feeding on child stunting and anaemia in rural Zimbabwe.. *The Lancet. Global health*, 7(1), pp.e132–e147.

Huybregts L, Houngbe F and Salpeteur C ; Brown R ; Roberfroid D ; Ait-Aissa M ; Kolsteren P ; (2012). The effect of adding ready-to-use supplementary food to a general food distribution on child nutritional status and morbidity: a cluster-randomized controlled trial.. *PLoS Medicine*, 9(9), pp.e1001313.

Huybregts L, Port A le and Becquey E ; Zongrone A ; Barba F M; Rahul Rawat ; Leroy J L; Ruel M T.; (2019). Impact on child acute malnutrition of integrating small-quantity lipid-based nutrient supplements into community-level screening for acute malnutrition: a cluster-randomized controlled trial in Mali.. *PLoS Medicine*, 16(8), pp.e1002892.

Iannotti L L, Dulience Sj L and Joseph S ; Cooley C ; Tuftte T ; Cox K ; Eaton J ; Delnatus J R; Wolff P B.; (2016). Fortified snack reduced anemia in rural school-aged children of Haiti: a cluster-randomized, controlled trial. *Plos one*, 11, pp.e0168121.

Iannotti L L, Lutter C K; Stewart C P; Riofrío C A. G; Malo C and Reinhart G ; Palacios A ; Karp C ; Chapnick M ; Cox K ; Waters W F.; (2017). Eggs in early complementary feeding and child growth: a randomized controlled trial.. *Pediatrics*, 140(1), pp..

Ijumba Petrida, Doherty Tanya and Jackson Debra ; Tomlinson Mark ; Sanders David ; Swanevelder Sonja ; Persson Lars-Åke ;. (2015). Effect Of An Integrated Community-Based Package For Maternal And Newborn Care On Feeding Patterns During The First 12 Weeks Of Life: A Cluster-Randomized Trial In A South African Township. Public Health Nutrition, 18(14), pp.2660-2668.

Islam M Munirul, McDonald Christine M; Krebs Nancy F; Westcott Jamie and Rahman Ahmed Ehsanur; El-Arifeen Shams ; Ahmed Tahmeed ; King Janet C; Black Robert E;. (2018). Study protocol for a randomized, double-blind, community-based efficacy trial of various doses of zinc in micronutrient powders or tablets in young Bangladeshi children.. *Nutrients*, 10(2), pp.132.

. (2014). Guyana's Hinterland and Community-Based School Feeding Programme. , , pp..

Jack S J, Ou K and Chea M ; Chhin L ; Devenish R ; Dunbar M ; Eang C ; Hou K ; Ly S ; Khin M ; Prak S ; Reach R ; Talukder A ; Tokmoh L ; de La Barra S L; Hill P C; Herbison P ; Gibson R S:. (2012). Effect of micronutrient sprinkles on reducing anemia: a cluster-randomized effectiveness trial.. *Archives of Pediatrics & Adolescent Medicine*, 166(9), pp.842-850.

Jaime Patricia Constante and Machado Flavia Mori Sarti; Westphal Márcia Faria; Monteiro Carlos Augusto;: (2007). Nutritional Education And Fruit And Vegetable Intake: A Randomized Community Trial. *Revista de Saúde Pública*, 41(1), pp..

Jakobsen Marianne S, Sodemann Morten and Biai Sidu ; Nielsen Jens ; Aaby Peter ;. (2008). Promotion of exclusive breastfeeding is not likely to be cost effective in west Africa. A randomized intervention study from Guinea-Bissau.. *Acta Paediatrica (Sweden) and Acta Paediatrica Scandinavica (Sweden)*, 97(1), pp.68-75.

Jamilian M, Bahmani F and Vahedpoor Z ; Salmani A ; Tajabadi-Ebrahimi M ; Jafari P ; Dizaji S H; Asemi Z ;. (2016). Effects of probiotic supplementation on metabolic status in pregnant women: a randomized, double-blind, placebo-controlled trial.. *Archives of Iranian Medicine*, 19(10), pp.687-692.

Janmohamed Amynah, Karakochuk Crystal D and Boungnasiri Somchit ; Chapman Gwen E; Janssen Patricia A; Brant Rollin ; Green Timothy J; McLean Judy ;. (2016). Prenatal supplementation with Corn Soya Blend Plus reduces the risk of maternal anemia in late gestation and lowers the rate of preterm birth but does not significantly improve maternal weight gain and birth anthropometric measurements in rural Cambodian women: a randomized trial. *American Journal of Clinical Nutrition*, 103, pp.559-566.

Jeong J H, Korsiaak J and Papp E ; Shi J ; Gernand A D; Al-Mahmud A ; Roth D E;: (2019). Determinants of vitamin D status of women of reproductive age in Dhaka, Bangladesh: insights from husband-wife comparisons.. Current Developments in Nutrition, 3(11), pp..

Jorge L Rosado, Patricia López; Katarzyna Kordas and Gonzalo García-Vargas; Dolores Ronquillo; Javier Alatorre; Rebecca J Stoltzfus;.. (2006). Iron and/or zinc supplementation did not reduce blood lead concentrations in children in a randomized, placebo-controlled trial ., pp..

Joy Edward J. M, Kalimbira Alexander A; Gashu Dawd and Ferguson Elaine L; Sturgess Joanna; Dangour Alan D; Banda Leonard; Chiuhsi-Phiri Gabriella; Bailey Elizabeth H; Langley-Evans Simon C; Lark r Murray; Millar Kate; Young Scott D; Matandika Limbananzo; Mfutso-Bengo Joseph; Phuka John C; Phiri Felix P; Gondwe Jellita; Ander E Louise; Lowe Nicola M; Nalivata Patson C; Broadley Martin R; Allen Elizabeth;.. (2019). Can selenium deficiency in Malawi be alleviated through consumption of agrobiofortified maize flour? Study protocol for a randomised, double-blind, controlled trial. *BMC*, 20(795), pp..

Joy Edward. (2019). Can dietary mineral deficiencies in a rural Malawi population be improved through the consumption of maize flour enriched using micronutrient fertilizers?, , pp..

Kabululu Mwemezi Lutakaya and Ngowi Helena Aminiel; Kimera Sharadhuli Iddi; Lekule Faustin Paul; Kimbi Eliakunda Casmir; Johansen Maria Vang;.. (2018). Effectiveness of an integrated intervention in the control of endo- and ectoparasites of pigs kept by smallholder farmers in Mbeya rural and Mbozi districts, Tanzania.. *Veterinary parasitology: regional studies and reports*, 13, pp.64-73.
Kadiyala Suneetha, Prost Audrey and Harris-Fry Helen; O'Hearn Meghan; Pradhan Ronali; Pradhan Shibanand; Mishra Naba Kishore; Rath Suchitra; Nair Nirmala; Rath Shibanand; Tripathy Prasanth; Krishnan Sneha; Koniz-Booher Peggy; Danton Heather; Elbourne Diana; Sturgess Joanna; Beaumont Emma; Haghparast-Bidgoli Hassan; Skordis-Worrall Jolene; Mohanty Satyanarayan; Upadhay Avinash; Allen Elizabeth; (2018). Upscaling Participatory Action and Videos for Agriculture and Nutrition (UPAVAN) trial comparing three variants of a nutrition-sensitive agricultural extension intervention to improve maternal and child nutritional outcomes in rural Odisha, India: study protocol for a cluster randomised controlled trial. *Trials*, 19(1), pp.176.

Kampstra Nynke A, Van Hoan Nguyen and Broersen Britt C; de Pee Saskia ; Koenders Damiet J. P. C; Bruins Maaike J; Schoop Rotraut ; Mouquet-Rivier Claire ; Traoré Tahirou ;. (2018). Energy and nutrient intake increased by 47-67% when amylase was added to fortified blended foods-a study among 12- to 35-month-old Burkinabe children. *Maternal & Child Nutrition*, 14(1), pp.e12459.

Katungi E, Magreta R and Letaa E ; Chirwa R ; Dambuleni K ; Nyamwaro S ;. (2017). *Adoption and impact of improved bean varieties on food security in Malawi*. Cali; Colombia: CIAT.

Katz J, Khatry S K and LeClerq S C; Mullany L C; Yanik E L; Stoltzfus R J; Siegel E H; Tielsch J M;,. (2010). Daily supplementation with iron plus folic acid, zinc, and their combination is not associated with younger age at first walking unassisted in malnourished preschool children from a deficient population in rural Nepal.. *Journal of Nutrition*, 140(7), pp.1317-1321.

Kehoe S H, Harsha Chopra and Sahariah S A; Dattatray Bhat; Munshi R P; Falguni Panchal; Young S; Brown N; Tarwande Dnyaneshwar; Gandhi Meera; Margetts B M; Potdar R D; Fall C H. D. (2015). Effects of a food-based intervention on markers of micronutrient status among Indian women of low socio-economic status. *British Journal of Nutrition*, 113, pp.813-821.

Keshtkar Abbas Ali, Ebrahimi Mehdi and Khashayar Patricia; Abdollahi Zahra; Pouraram Hamed; Salehi Forouzan; Mohammadi Zahra; Khosrokhavar Roya; Larijani Bagher; (2015). Community Interventional Trial (CITFOMIST) of Vitamin D Fortified Versus Non-fortified Milk on Serum Levels of 25(OH) D in the Students of Tehran. Archives of Iranian medicine, 18(5), pp.272-6.

Ketsuwan S, Baiya N and Hanprasertpong T; Suksamarnwong M; Srisuwan S; Puapornpong P; (2019). Comparison of LATCH scores between mothers' breastfeeding teaching done by registered and practical nurses during the immediate postpartum period; a randomized controlled trial. Journal of the Medical Association of Thailand, 102(Suppl. 6), pp.41-45.

Khadgawat R, Marwaha R K and Garg M K; Ramot R; Oberoi A K; Sreenivas V; Gahlot M; Mehan N; Mathur P; Gupta N; (2013). Impact of vitamin D fortified milk supplementation on vitamin D status of healthy school children aged 10-14 years. Osteoporosis International, 24, pp.2335-2343.

Khan A I, Kabir I and Ekstrom E C; Asling-Monemi K; Alam D S; Frongillo E A; Yunus M; Arifeen S; Persson L A; (2011). Effects of prenatal food and micronutrient supplementation on child growth from birth to 54 months of age: a randomized trial in Bangladesh. Nutrition Journal, 10(134), pp..

Kim Sunny S, Nguyen Phuong Hong; Tran Lan Mai; Sanghvi Tina and Mahmud Zeba; Haque Mohammad Raisul; Afsana Kaosar; Frongillo Edward A; Ruel Marie T; Menon Purnima;. (2018). Large-scale social and behavior change communication interventions have sustained impacts on infant and young child feeding knowledge and practices: results of a 2-year follow-up study in Bangladesh.. Journal of Nutrition, 148(10), pp.1605-1614.

Kimani-Murage E W, Griffiths P L; Wekesah F M; Wanjoji M and Muhia N; Muriuki P; Egondi T; Kyobutungi C; Ezeh A C; McGarvey S T; Musoke R N; Norris S A; Madise N J. (2017). Effectiveness of home-based nutritional counselling and support on exclusive breastfeeding in urban poor settings in Nairobi: a cluster randomized controlled trial. *Globalization and Health*, 13(90), pp..

Kiondo Paul, Wamuyu-Maina Gakenia and Wandabwa Julius; Bimenya Gabriel S; Tumwesigye Nazarius Mbona; Okong Pius. (2014). The effects of vitamin C supplementation on pre-eclampsia in Mulago Hospital, Kampala, Uganda: a randomized placebo controlled clinical trial. *BMC Pregnancy and Childbirth*, 14(283), pp..

Kodkany Bhalchandra S and Bellad Roopa M; Mahantshetti Niranjana S; Westcott Jamie E; Krebs Nancy F; Kemp Jennifer F; Hambidge K Michael;. (2013). Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. *Journal of Nutrition*, 143, pp.1489-1493.

Kramer M S, Chalmers B and Hodnett E D; Sevkovskaya Z ; Dzikovich I ; Shapiro S ; Collet J P; Vanilovich I ; Mezen I ; Ducruet T ; Shishko G ; Zubovich V ; Mknuik D ; Gluchanina E ; Dombrovskiy V ; Ustinovitch A ; Kot T ; Bogdanovich N ; Ovchinikova L ; Helsing E ;. (2001). Promotion of Breastfeeding Intervention Trial (PROBIT). A randomized trial in the Republic of Belarus. JAMA and Journal of the American Medical Association, 285, pp.413-420.

Krebs N F, Mazariegos M and Chomba E ; Sami N ; Pasha O ; Tshefu A ; Carlo W A; Goldenberg R L; Bose C L; Wright L L; Koso-Thomas M ; Goco N ; Kindern M ; McClure Elizabeth M; Westcott J ; Garces A ; Lokangaka A ; Manasyan A ; Imenda E ; Hartwell Tyler D; Hambidge M K;. (2012). Randomized controlled trial of meat compared with multimicronutrient-fortified cereal in infants and toddlers with high stunting rates in diverse settings. American journal of clinical nutrition, 96, pp.840-847.

Kruger M C, Chan Y M; Lau L T; Lau C C; Chin Y S; Kuhn-Sherlock B and Todd J M; Schollum L M;. (2018). Calcium and vitamin D fortified milk reduces bone turnover and improves bone density in postmenopausal women over 1 year.. European Journal of Nutrition, 57(8), pp.2785-2794.

Kugo M, Keter L and Maiyo A ; Kinyua J ; Ndemwa P ; Maina G ; Otieno P ; Songok E M;. (2018). Fortification of Carica papaya fruit seeds to school meal snacks may aid Africa mass deworming programs: A preliminary survey. BMC Complementary and Alternative Medicine, 18(1), pp..

Kung‘u J K, Pendame R and Ndiaye M B; Gerbaba M ; Ochola S ; Faye A ; Basnet S ; Frongillo E A; Wuehler S ; De-Regil L M; (2018). Integrating nutrition into health systems at community level: impact evaluation of the Community-Based Maternal and Neonatal Health and Nutrition projects in Ethiopia, Kenya, and Senegal.. Special Issue: Advancing maternal and neonatal health and nutrition in Africa: findings from an integrated community based multi-country project., 14(s1), pp.e12577.

Kuong Khov, Tor Pety and Perignon Marlene ; Fiorentino Marion ; Chamnan Chhoun ; Berger Jacques ; Burja Kurt ; Dijikhuzen Marjoleine A; Parker Megan ; Roos Nanna ; Wieringa Frank T.; (2019). Multi-Micronutrient Fortified Rice Improved Serum Zinc and Folate Concentrations of Cambodian School Children. A Double-Blinded Cluster-Randomized Controlled Trial. Nutrients, 11, pp.2843-2843.

Kuriyan Rebecca, Raj Tony and Srinivas S K; Vaz Mario ; Rajendran R ; Kurpad Anura V; (2007). Effect of Caralluma Fimbriata extract on appetite, food intake and anthropometry in adult Indian men and women.. Appetite, 48(3), pp.338-344.

Kuriyan R, Thankachan P and Selvam S ; Pauline M ; Srinivasan K ; Kamath-Jha S ; Vinoy S ; Misra S ; Finnegan Y ; Kurpad A V; (2016). The effects of regular consumption of a multiple micronutrient fortified milk beverage on the micronutrient status of school children and on their mental and physical performance. Clinical nutrition (Edinburgh and Scotland), 35, pp.190-198.

Le Port A, Bernard T and Hidrobo M; Birba O; Rawt R; Ruel M T.; (2017). Delivery of iron-fortified yoghurt, through a dairy value chain program, increases hemoglobin concentration among children 24 to 59 months old in Northern Senegal: A cluster-randomized control trial.. *PloS one*, 12(2), pp.e0172198.

Lee R, Singh Lauren and van Liefde D; Callaghan-Gillespie M; Steiner-Asiedu M; Saalia K; Edwards C; Serena A; Hershey T; Manary M J.; (2018). Milk powder added to a school meal increases cognitive test scores in Ghanaian children. *Journal of Nutrition*, 148(7), pp.1177-1184.

Leroy J L, García-Guerra A and García R ; Dominguez C ; Rivera J ; Neufeld L M; Leroy Jef L; García-Guerra Armando ; Garcia Raquel ; Dominguez Clara ; Rivera Juan ; Neufeld Lynnette M;,. (2008). The Oportunidades program increases the linear growth of children enrolled at young ages in urban Mexico. *Journal of Nutrition*, 138, pp.793-798.

Leroy J L, Gadsden P and Rodríguez-Ramírez S ; De Cossio ; T G ;,. (2010). Cash and in-kind transfers in poor rural communities in Mexico increase household fruit, vegetable, and micronutrient consumption but also lead to excess energy consumption. *Journal of Nutrition*, 140, pp.612-617.

Lewycka Sonia, Mwansambo Charles and Rosato Mikey; Kazembe Peter; Phiri Tambosi; Mganga Andrew; Chapota Hilda; Malamba Florida; Kainja Esther; Newell Marie-Louise; Greco Giulia; Pulkki-Brannstrom Anni-Maria; Skordis-Worrall Jolene; Vergnano Stefania; Osrin David; Costello Anthony. (2013). Effect of women's groups and volunteer peer counselling on rates of mortality, morbidity, and health behaviours in mothers and children in rural Malawi (MaiMwana): A factorial, cluster-randomised controlled trial. *The Lancet*, 381(9879), pp.1721-1735.

Li L, Zhao X and Wang J; Muzhingi T; Suter P M; Tang G W; Yin S. (2012). Spirulina can increase total-body vitamin A stores of Chinese school-age children as determined by a paired isotope dilution technique. *Journal of Nutritional Science*, 1(e19), pp..

Lin Carol A, Manary Mark J; Maleta Ken and Briend André; Ashorn Per. (2008). An energy-dense complementary food is associated with a modest increase in weight gain when compared with a fortified porridge in Malawian children aged 6-18 months. *Journal of Nutrition*, 138, pp.593-598.

Lin Q, Peymané A and Karla H; Yang L; Hong Q H; Li M; Deng J; Shi J; Chen J. (2015). Health allowance for improving the nutritional status and development of 3–5-year-old left-behind children in poor rural areas of China: study protocol for a cluster randomised trial. *Trials*, 16(361), pp..

Liu YongFang, Chen Li and Gong Min; Liu YouXue; Chen Jie; Qu Ping; Li TingYu; (2013). Effects of vitamin A combined with other micronutrients on nutritional status of 3-6 years old children. *Academic Journal of Second Military Medical University*, 34(8), pp.828-834.

Liu Zheng, Wu Yangfeng and Niu Wen-Yi; Feng Xiangxian; Lin Yi; Gao Aiyu; Zhang Fang; Fang Hai; Gao Pei; Li Hui-Juan; Wang Haijun; study team for the DECIDE-children study; (2019). A school-based, multi-faceted health promotion programme to prevent obesity among children: protocol of a cluster-randomised controlled trial (the DECIDE-Children study). *BMJ open*, 9(11), pp.e027902.

Longfils P, Monchy D and Weinheimer H; Chavasit V; Nakanishi Y; Schümann K; Longfils Philippe; Monchy Didier; Weinheimer Heike; Chavasit Visith; Nakanishi Yukiko; Schümann Klaus.; (2008). A comparative intervention trial on fish sauce fortified with NaFe-EDTA and FeSO4+citrate in iron deficiency anemic school children in Kampot, Cambodia. *Asia Pacific Journal of Clinical Nutrition*, 17, pp.250-257.

Romana D L, Ruz M and Pizarro F ; Landeta L ; Olivares M A;. (2008). Supplementation with zinc between meals has no effect on subsequent iron absorption or on iron status of Chilean women.. Nutrition, 24(10), pp.957-63.

Lopez-Teros V, Quihui-Cota L and Méndez-Estrada R O; Grijalva-Haro M I; Esparza-Romero J ; Valencia M E; Green M H; Tang G ; Pacheco-Moreno B I; Tortoledo-Ortiz O ; Astiazaran-Garcia H ;. (2013). Vitamin a-fortified milk increases total body vitamin a stores in mexican preschoolers. Journal of Nutrition, 143(2), pp.221-226.

Lu YanHui, Fu XiaoMin and Zhang LiLi ; Liu MinYan ; Cheng XiaoLing ; Yan ShuangTong ; Li Nan ; Miao XinYu ; Sun BanRuo ; Li ChunLin ;. (2018). Effects of stratified vitamin D supplementation in middle-aged and elderly individuals with vitamin D insufficiency.. Hormone and Metabolic Research, 50(10), pp.747-753.

Luby S P; Mahbubur Rahman and Arnold B F; Unicomb L; Sania Ashraf; Winch P J; Stewart C P; Farzana Begum; Faruque Hussain; Benjamin-Chung J; Leontsini E; Naser A M; Parvez S M; Hubbard A E; Lin A; Nizame F A; Kaniz Jannat; Erçumen A; Ram P K; Das K K; Jaynal Abedin; Clasen T F; Dewey K G; Fernald L C; Null C [et al]. (2018). Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: a cluster randomised controlled trial. *Lancet Global Health*, 6(3), pp.e302-e315.

Luo Renfu, Shi Yaojiang and Zhang Linxiu; Liu; Chengfang; Rozelle; Scott; Sharbono Brian; Yue Ai; Zhao Qiran; Martorell Reynaldo; (2012). Nutrition and Educational Performance in Rural China’s Elementary Schools: Results of a Randomized Control Trial in Shaanxi Province. *Economic Development and Cultural Change*, 60(4), pp.735-772.

Lv ShengMin, Xie LiJun and Xu Dong; Wang YuChun; Jia LiHui; Du YongGui; (2016). Effect of reducing iodine excess on children's goiter prevalence in areas with high iodine in drinking water. *Endocrine*, 52(2), pp.296-304.

Macharia-Mutie C W, Moretti D and Van den Briel N; Omusundi A M; Mwangi A M; Kok F J; Zimmermann M B; Brouwer I D; (2012). Maize porridge enriched with a micronutrient powder containing low-dose iron as NaFeEDTA but not amaranth grain flour reduces anemia and iron deficiency in Kenyan preschool children. *Journal of Nutrition*, 142(9), pp.1756-1763.

Maertens L. (2016). *The effect of demonstration plots and a warehouse receipt system on ISFM adoption, income and yield of smallholder farmers: an evaluation of Malawi’s Anchor Farm Model.* :

Maffioli E, Field E and Zaw N ; Esu F ; Fertig A ;; (2019). *LEGACY Program Randomized Controlled Trial Endline Report.* : , pp.60. Available at: function URL() { [native code] }.

Mahajan A, Gine X and Malani A ; Rao M ;; (2017). The Impact of Minor Irrigation Tank Rehabilitation on Agricultural Outcomes and Water Management in India. , , pp..

Makau D N, VanLeeuwen J A; Gitau G K; McKenna S L; Walton C and Muraya J ; Wichtel J J ;. (2019). Effects of Calliandra and Sesbania supplementation on weight gain in dairy calves on smallholder farms in Kenya.. *Preventive veterinary medicine*, 172, pp..

Makurat Jan, Kretz Eleonore C and Wieringa Frank T; Chamnan Chhoun; Krawinkel Michael B.; (2018). Dietary Diversity in Cambodian Garment Workers: The Role of Free Lunch Provision.. *Nutrients*, 10(8), pp..

Maleta K M, Phuka J and Alho L; Cheung YinBun; Dewey K G; Ashorn U; Phiri N; Phiri T E; Vosti S A; Zeilani M; Kumwenda C; Bendabenda J; Pulakka A; Ashorn P.; (2015). Provision of 10-40 g/d lipid-based nutrient supplements from 6 to 18 months of age does not prevent linear growth faltering in Malawi.. *Journal of Nutrition*, 145(8), pp.1909-1915.

Malik V S, Sudha V and Wedick N M; Ramyabai M; Vijayalakshmi P; Lakshmipriya N; Gayathri R; Kokila A; Jones C; Hong B; Li R; Krishnaswamy K; Anjana R M; Spiegelman D; Willett W C; Hu F B; Mohan V.; (2019). Substituting brown rice for white rice on diabetes risk factors in India: a randomised controlled trial.. *British Journal of Nutrition*, 121(12), pp.1389-1397.

Mallard Simonette R, Houghton Lisa A; Filteau Suzanne and Mullen Anne; Nieuwelink Johanna; Chisenga Molly; Siame Joshua; Gibson Rosalind S.; (2014). Dietary diversity at 6 months of age is associated with subsequent growth and mediates the effect of maternal education on infant growth in urban Zambia.. *The Journal of nutrition*, 144(11), pp.1818-1825.

Manger M S, McKenzie J E; Winichagoon P and Gray A; Chavasit V; Pongcharoen T; Gowachirapant S; Ryan B; Wasantwisut E; Gibson R S; (2008). Micronutrient-fortified seasoning powder reduces morbidity and improves short-term cognitive function, but has no effect on anthropometric measures in primary school children in northeast Thailand: a randomized controlled trial. *American journal of clinical nutrition AJN*, 87(6), pp.1715-1722.

Mantaring Jacinto, Benyacoub Jalil and Destura Raul; Pecquet Sophie; Vidal Karine; Volger Sheri; Guinto Valerie; (2018). Effect of maternal supplement beverage with and without probiotics during pregnancy and lactation on maternal and infant health: a randomized controlled trial in the Philippines.. *BMC Pregnancy and Childbirth*, 18(193), pp..

Mardones F, Urrutia M T and Villarroel L; Rioseco A; Castillo O; Rozowski J; Tapia J L; Bastias G; Bacallao J; Rojas I; Mardones Francisco; Urrutia Maria-Teresa; Villarroel Luis; Rioseco Alonso; Castillo Oscar; Rozowski Jaime; Tapia Jose-Luis; Bastias Gabriel; Bacallao Jorge; Rojas Ivan; (2008). Effects of a dairy product fortified with multiple micronutrients and omega-3 fatty acids on birth weight and gestation duration in pregnant Chilean women. *Public Health Nutrition*, 11, pp.30-40.

Martinez S, Johannsen J and Gertner G ; Franco J ; Exposito A B. P; Bartolini R M; Condori I ; Ayllon J F; Llanque R ; Alvarado N ; Lunstedt C ; Ferrufino C ; Reinaga T ; Chumacero M ; Foronda C ; Albarracin S ; Aguilar A M. (2018). Effects of a home-based participatory play intervention on infant and young child nutrition: a randomised evaluation among low-income households in El Alto, Bolivia.. *BMJ Global Health*, 3(3), pp.e000687.

Martinez-Andrade G O, Cespedes E M; Rifas-Shiman S L; Romero-Quechol G and Gonzalez-Unzaga M A; Benitez-Trejo M A; Flores-Huerta S ; Horan C ; Haines J ; Tavera E M; Perez-Cuevas R ; Gillman M W. (2014). Feasibility and impact of Creciendo sanos, a clinic-based pilot intervention to prevent obesity among preschool children in Mexico City.. *BMC Pediatrics*, 14(77), pp..

Mathias M G, Coelho-Landell C A; Scott-Boyer M P; Lacroix S and Morine M J; Salomao R G; Toffano R B D; Almada M O. R V; Camarneiro J M; Hillesheim E; Barros T T; Camel J S; Gimenez E C; Redeuil K; Goyon A; Bertschy E; Leveques A; Oberson J M; Gimenez C; Carayol J; Kussmann M; Descombes P; Metairon S; Draper C F; Conus N; Mottaz S C; et al; (2018). Clinical and vitamin response to a short-term multi-micronutrient intervention in Brazilian children and teens: from population data to interindivdual responses. *Molecular Nutrition & Food Research*, 62(6), pp..

Matias S L, Vargas-Vasquez A and Bado Perez; R; Alcazar Valdivia; L; Aquino Vivanco; O; Rodriguez Martin; A; Novalbos Ruiz; J P; (2017). Effects of lipid-based nutrient supplements v. micronutrient powders on nutritional and developmental outcomes among Peruvian infants. *Public Health Nutrition*, 20(16), pp.2998-3007.

Sarmila Mazumder 1 and Sunita Taneja 1; Kiran Bhatia 1; Sachiyoshiida 2; Jasmin Kaur 1; Brinda Dube 1; G S Toteja 3; Rajiv Bahl 2; Olivier Fontaine 2; Jose Martines 4; Nita Bhandari 5; Neovita India Study Group;. (2014). Efficacy of early neonatal supplementation with vitamin A to reduce mortality in infancy in Haryana, India (Neovita): a randomised, double-blind, placebo-controlled trial. , , pp..

McLean Erin D and Allen Lindsay H; Neumann C G; Peerson J M; Siekmann J H; Murphy S P; Bwibo N O; Demment M W.; (2007). Low plasma vitamin B-12 in Kenyan school children is highly prevalent and improved by supplemental animal source foods.. The Journal of nutrition, 137(3), pp.676-82.

Mehran L, Nazer i P and Delshad H ; Mirmiran P ; Mehrabi Y ; Azizi F ;. (2012). Does a text messaging intervention improve knowledge, attitudes and practice regarding iodine deficiency and iodized salt consumption?. Public Health Nutrition, 15(12), pp.2320-2325.

Mehta Saurabh, Finkelstein Julia L and Venkatramanan Sudha ; Huey Samantha L; Udipi Shobha A; Ghugre Padmini ; Ruth Caleb ; Canfield Richard L; Kurpad Anura V; Potdar Ramesh D; Haas Jere D;. (2017). Effect of iron and zinc-biofortified pearl millet

Menasria L, Blaney S and Chhea C ; Chiasson L ; Hun V ; Leblanc C P; Main B ; Raminashvili D ; Vong L ;. (2018). Mitigated Impact of Provision of Local Foods Combined with Nutrition Education and Counseling on Young Child Nutritional Status in Cambodia. Nutrients, 10(10), pp.18.

Menezes M C and Mingoti S A; Cardoso C S; Mendonça R D; Lopes A C S;. (2015). Intervention Based On Transtheoretical Model Promotes Anthropometric And Nutritional Improvements — A Randomized Controlled Trial. Eating Behaviors, 17, pp.37-44.

Meng L, Xu H and Liu A ; Raaij J ; Bemelmans W ; Hu X ; Zhang Q ; Du S ; Fang H ; Ma J ; Xu G ; Li Y ; Guo H ; Du L ; Ma G ;. (2013). The costs and cost-effectiveness of a school-based comprehensive intervention study on childhood obesity in China. PLoS ONE, 8(10), pp..

Menon P, Nguyen P H and Saha K K; Khaled A ; Kennedy A ; Tran L M; Sanghvi T ; Hajeebhoy N ; Baker J ; Alayon S ; AfSana K ; Haque R ; Frongillo E A; Ruel M T; Rawat R ; (2016). Impacts on Breastfeeding Practices of At-Scale Strategies That Combine Intensive Interpersonal Counseling, Mass Media, and Community Mobilization: Results of Cluster-Randomized Program Evaluations in Bangladesh and Viet Nam. *PLoS Medicine*, 13, pp..

Meriaaldi M, Caulfield L E and Zavaleta N ; Figueroa A ; Costigan K A; Dominici F ; Dipietro J A;. (2004). Randomized controlled trial of prenatal zinc supplementation and fetal bone growth. , , pp..

Michaux K D, Hou K and Karakochuk C D; Whitfield K C; Ly S ; Verbowski V ; Stormer A ; Porter K ; Li K H; Houghton L A; Lynd L D; Talukder A ; McLean J ; Green T J.; (2019). Effect of enhanced homestead food production on anaemia among Cambodian women and children: a cluster randomized controlled trial.. *Maternal & Child Nutrition*, 15(s3), pp.e12757.

Miller G, Luo R and Zhang L ; Sylvia S ; Shi Y ; Foo P ; Zhao Q ; Martorell R ; Medina A ; Rozelle S ;. (2012). Effectiveness of provider incentives for anaemia reduction in rural China: a cluster randomised trial. *BMJ*, 345, pp.e4809.

Htet M K, Fahmida U and Dillon D ; Akib A ; Utomo B ; Thurnham D I;. (2019). Is iron supplementation influenced by sub-clinical inflammation?: a randomized controlled trial among adolescent schoolgirls in Myanmar.. *Nutrients*, 11(4), pp.918.

 [native code]
}

Monterrosa E C, Frongillo E A; Gonzalez de Cossio; T and Bonvecchio A ; Villanueva M A; Thrasher J F; Rivera J A ;. (2013). Scripted messages delivered by nurses and radio changed beliefs, attitudes, intentions, and behaviors regarding infant and young child feeding in Mexico.. *Journal of Nutrition*, 143(6), pp.915-922.

Morales-Ruan Maria del Carmen, Shamah-Levy Teresa and Amaya-Castellanos Claudia Isabel; Salazar-Coronel Araceli Apolonia; Jimenez-Aguilar Alejandra ; Amaya-Castellanos Maritza Alejandra; Mendez-Gomez Humaran ; Ignacio . (2014). Effects of an intervention strategy for school children aimed at reducing overweight and obesity within the State of Mexico.. *Salud publica de Mexico*, 56 Suppl 2, pp.s113-22.

Mosha D, Canavan C R and Bellows A L; Blakstad M M; Noor R A; Masanja H ; Kinabo J ; Fawzi W ; (2018). The impact of integrated nutrition-sensitive interventions on nutrition and health of children and women in rural Tanzania: study protocol for a cluster-randomized controlled trial.. *BMC nutrition*, 4(29), pp.8.

Moss Cami, Bekele Tesfaye Hailu and Salasibew Mihretab Melesse; Sturgess Joanna ; Ayana Girmay ; Kuche Desalegn ; Eshetu Solomon ; Ahera Andinet ; Allen Elizabeth ; Dangour Alan D.; (2018). Sustainable Undernutrition Reduction in Ethiopia (SURE) evaluation study: a protocol to evaluate impact, process and context of a large-scale integrated health and agriculture programme to improve complementary feeding in Ethiopia.. *BMJ open*, 8, pp.e022028.

Mouodi Simin. (2016). Comparison the effectiveness of lifestyle modification interventions. *Cochrane Central Register of Controlled Trials*, , pp..

Mridha M K, Matias S L; Chaparro C M; Paul R R; Sohrab Hussain and Vosti S A; Harding K L; Cummins J R; Day L T; Saha S L; Peerson J M; Dewey K G.; (2016). Lipid-based nutrient supplements for pregnant women reduce newborn stunting in a cluster-randomized controlled effectiveness trial in Bangladesh. American Journal of Clinical Nutrition, 103(1), pp.236-249.

Che’Muda C M, Ismail T A T; Jalil R A; Hairon S M; Sulaiman Z and Johar N.; (2019). Postnatal breastfeeding education at one week after childbirth: What are the effects?. Women and Birth, 32(2), pp.e243-e251.

Ivan Müller, Danielle Smith and Larissa Adams; Ann Aerts; Bruce P Damons; Jan Degen; Stefanie Gall; Zaahira Gani; Markus Gerber; Annelie Gresse; Darelle van Greunen; Nandi Joubert; Tracey Marais; Siphesihle Nqweniso; Nicole Probst-Hensch; Rosa du Randt; Harald Seelig; Peter Steinmann; Jürg Utzinger; Christina Wadhwani; Cheryl Walter; Uwe Pühse.; (2018). Effects of a School-Based Health Intervention Program in Marginalized Communities of Port Elizabeth, South Africa (the KaziBantu Study): Protocol for a Randomized Controlled Trial. http://www.who.int/trialsearch/Trial2.aspx?TrialID=ISRCTN18485542, , pp..

Muslimatun S, Schmidt M K and Schultink W; West C E; Hautvast J A; Cross R; Muhilal ;. (2001). Weekly supplementation with iron and vitamin A during pregnancy increases hemoglobin concentration but decreases serum ferritin concentration in Indonesian pregnant women., , pp..

Nabulsi Mona, Tamim Hani and Shamsedine Lama; Charafeddine Lama; Yehya Nadine; Kabakian-Khasholian Tamar; Masri Saadieh; Nasser Fatima; Ayash Soumaya; Ghanem Diane; (2019). A multi-component intervention to support breastfeeding in Lebanon: A randomized clinical trial. *PloS one*, 14(6), pp.e0218467.

Nakasone E. (2013). The role of price information in agricultural markets: experimental evidence from rural Peru. , , pp..

nayati D A, Scherbaum V and Purwestri R C; Wirawan N N; Suryantan J ; Hartono S ; Bloem M A; Pangaribuan R V; Biesalski H K; Hoffmann V ; Bellows C ;. (2012). Improved nutrition knowledge and practice through intensive nutrition education: a study among caregivers of mildly wasted children on Nias Island, Indonesia . *Food and Nutrition Bulletin*, 33, pp..

Neufeld Lynnette M, García-Guerra Armando and Quezada Amado D; Théodore Florence ; Bonvecchio Arenas Anabelle ; Islas Clara Domínguez; Garcia-Feregrino Raquel ; Hernandez Amira ; Colchero Arantxa ; Habicht Jean Pierre; Bonvecchio Arenas ; Anabelle ;. (2019). A Fortified Food Can Be Replaced by Micronutrient Supplements for Distribution in a Mexican Social Protection Program Based on Results of a Cluster-Randomized Trial and Costing Analysis. Journal of Nutrition, 149, pp.2302S-2309S.

Newton Sam, Owusu-Agyei Seth and Asante Kwaku Poku; Amoafu Esi; Mahama Emmanuel; Tchum Samuel Kofi; Ali Martha; Adjei Kwame; Davis Christopher R; Tanumihardjo Sherry A.; (2016). Vitamin A status and body pool size of infants before and after consuming fortified home-based complementary foods. *Archives of Public Health*, 74, pp.10-10.

Neyestani T R, Hajifaraji M and Omidvar N; Nikooyeh B; Eshraghian M R; Shariatzadeh N; Kalayi A; Khalaji N; Zahedirad M; Abtahi M; Asadzadeh S.; (2014). Calcium-vitamin D-fortified milk is as effective on circulating bone biomarkers as fortified juice and supplement but has less acceptance: a randomised controlled school-based trial. *Journal of Human Nutrition and Dietetics*, 27(6), pp.606-616.

. (2010). Estimation of Actual and Potential Adoption Rates and Determinants of Improved Rice Variety Among Rice Farmers in Nigeria: The Case of NERICAs. , , pp..

Nicole Li, Lijing L Yan and Wenyi Niu; Chen Yao; Xiangxian Feng; Jianxin Zhang; Jingpu Shi; Yuhong Zhang; Ruijuan Zhang; Zhixin Hao; Hongling Chu; Jing Zhang; Xian Li; Jianhong Pan; Zhifang Li; Jixin Sun; Bo Zhou; Yi Zhao; Yan Yu; Michael Engelgau; Darwin Labarthe; Jixiang Ma; Stephen MacMahon; Paul Elliott; Yangfeng Wu; Bruce Neal; . (2016). The Effects of a Community-Based Sodium Reduction Program in Rural China – A Cluster- Randomized Trial. , , pp..

Nikooyeh Bahareh, Neyestani Tirang R and Zahedirad Maliheh; Mohammadi Mehrdad; Hosseini S Hedayat; Abdollahi Zahra; Salehi Foroozan; Razaz Jalaledin Mirzay; Shariatrzadeh Nastaran; Kalayi Ali; Lotfollahi Neda; Maleki Mohammad-Reza; . (2016). Vitamin D-Fortified Bread Is as Effective as Supplement in Improving Vitamin D Status: A Randomized Clinical Trial. *Journal of Clinical Endocrinology & Metabolism,* 101(6), pp.2511-2519.

Nimpagaritse M, Korachais C and Roberfroid D; Kolsteren P; El-Idrissi M D. Z. E; Meessen B; . (2016). Measuring and understanding the effects of a performance based financing scheme applied to nutrition services in Burundi - a mixed method impact evaluation design. . *International Journal for Equity in Health,* 15(93), pp..

. (2012). Impacts of in-kind transfers on household food consumption: evidence from targeted food programmes in Bangladesh. , , pp..

Nirmala Nair, Prasanta Tripathy and Sachdev H S; Hemanta Pradhan ; Sanghita Bhattacharyya ; Rajkumar Gope ; Sumitra Gagrai ; Shibandan Rath ; Suchitra Rath ; Rajesh Sinha ; Roy S S ; Suhas Shewale ; Vijay Singh ; Aradhana Srivastava ; Costello A ; Copas A ; Skordis-Worrall J ; Haghpastar-Bidgoli H ; Prost A ; (2017). Effect of participatory women's groups and counselling through home visits on children's linear growth in rural eastern India (CARING trial): a cluster-randomised controlled trial. *Lancet Global Health*, 5(10), pp.e1004-e1016.

Nkonya E, Bawa D and Kato E ; Maurice D ; Murtala N ; Nuhu H ; Kwaghe P ; Bila Y ; Sani R ; (2019). Humanitarian assistance and resilience-building: Impact of Fadama III-AF II on food security and livelihood restoration in Northeastern Nigeria. *IFPRI Project Note*, pp..

Nurhasan Mulia, Roos Nanna and Skau Jutta Kh; Wieringa Frank T; Friis Henrik; Michaelsen Kim F; Dijkhuizen Marjoleine A; Stark Ken D; Ritz Christian; Chhoun Chamnan; Lauritzen Lotte; (2018). Effect of complementary food with small amounts of freshwater fish on whole blood n-3 fatty acids in Cambodian infants age 6-15 months.. *Prostaglandins, leukotrienes and and essential fatty acids*, 135, pp.92-101.

Nyangau Paul, Muriithi Beatrice and Irungu Patrick; Nzuma Jonathan; Diiro Glacious; (2017). Assessing the impact of integrated pest management (IPM) technology for mango fruit fly control on food security among smallholders in Machakos County, Kenya. : Agricultural Economics Society.

Ochoa Theresa J, Baiocchi Nelly and Valdiviezo Gladys; Bullon Vanessa; Campos Miguel; Llanos-Cuentas Alejandro; (2017). Evaluation of the efficacy, safety and acceptability of a fish protein isolate in the nutrition of children under 36 months of age.. *Public health nutrition*, 20(15), pp.2819-2826.

Ochoa-Aviles Angelica, Verstraeten Roosmarijn and Huybregts Lieven; Andrade Susana; Van Camp; John; Donoso Silvana; Ramirez Patricia Liliana; Lachat Carl; Maes Lea; Kolsteren Patrick; (2017). A school-based intervention improved dietary
intake outcomes and reduced waist circumference in adolescents: a cluster randomized controlled trial.. Nutrition journal, 16(1), pp.79.

Oken E, Patel R and Guthrie L B; Vilchuck K ; Bogdanovich N ; Sergeichick N ; Palmer T M; Kramer M S; Martin R M.; (2013). Effects of an intervention to promote breastfeeding on maternal adiposity and blood pressure at 11.5 y postpartum: results from the Promotion of Breastfeeding Intervention Trial, a cluster-randomized controlled trial. American journal of clinical nutrition, 98(4), pp.1048-1056.

Oparinde A, Birol E and Murekezi A ; Katsvairo L ; Diressie M T; Nkundimana J A; Butare L ;. (2016). Radio messaging frequency, information framing, and consumer willingness to pay for biofortified iron beans: evidence from revealed preference elicitation in rural Rwanda.. *Special Issue: Applications of behavioral and experimental economics to decision making in the agricultural, food and and resource sectors.*, 64(4), pp.613-652.

Oropeza-Ceja Lorena G, Rosado Jorge L; Ronquillo Dolores and García Olga P; del C Caamaño Maria; García-Ugalde Carlos ; Viveros-Contreras Rubi ; Duarte-Vázquez Miguel Angel;: (2018). Lower Protein Intake Supports Normal Growth of Full-Term Infants Fed Formula: A Randomized Controlled Trial. *Nutrients*, 10(7), pp..

Osei A, Pandey P and Nielsen J ; Pries A ; Spiro D ; Davis D ; Quinn V ; Haselow N ;. (2017). Combining Home Garden, Poultry, and Nutrition Education Program Targeted to Families With Young Children Improved Anemia Among Children and Anemia and Underweight Among Nonpregnant Women in Nepal.. *Food and nutrition bulletin*, 38(1), pp.49-64.

Osei R D, Dzanku F M; Osei-Akoto I and Asante F ; Hodey L S; Adu P N; Adu-Ababio K ; Coulibaly M ;. (2018). *Impact of voice reminders to reinforce harvest aggregation services training for farmers in Mali*. , pp.56. Available at: function URL() { [native code] }.

Ouladsahebmadarek E, Sayyah-Melli M and Taghavi S ; Abbasalizadeh S ; Seyedhejazie M ;. (2011). The effect of supplemental iron elimination on pregnancy outcome. , , pp..

Owusu-Agyei S, Newton S and Mahama E; Febir L G; Ali M ; Adjei K ; Tchum K ; Alhassan L ; Moleah T ; Tanumihardjo S A;. (2013). Impact of vitamin a with zinc supplementation on malaria morbidity in Ghana.. Nutrition Journal, 12(131), pp..

Pachon Helena, Schroeder Dirk G and Marsh David R; Dearden Kirk A; Ha Tran Thu; Lang Tran Thi;. (2002). Effect of an integrated child nutrition intervention on the complementary food intake of young children in rural north Viet Nam.. Food and nutrition bulletin, 23(4), pp.62-9.

Palmer Amanda C, Healy Katherine and Barffour Maxwell A; Siamusantu Ward ; Chileshe Justin ; Schulze Kerry J; West Keith P Jr; Labrique Alain B;. (2016). Provitamin A Carotenoid-Biofortified Maize Consumption Increases Pupillary Responsiveness among Zambian Children in a Randomized Controlled Trial.. The Journal of nutrition, 146(12), pp.2551-2558.

Passarelli S, Ambikapathi R and Gunaratna N S; Madzorera I; Canavan C R; Noor A R; Worku A; Berhane Y; Abdelmenan S; Sibanda S; Munthali B; Madzivhandila T; Sibanda L M; Geremew K; Dessie T; Abegaz S; Assefa G; Sudfeld C; McConnell M; Davison K; Fawzi W; (2020). A Chicken Production Intervention and Additional Nutrition Behavior Change Component Increased Child Growth in Ethiopia: A Cluster-Randomized Trial. *The Journal of Nutrition*, , pp.1-12.

Patriota P F, Filgueiras A R; de Almeida V B P; Alexmovitz G A C; da Silva C E; de Carvalho V F F; Carvalho N and de Albuquerque M P; Domene S M A; do Prado W L; Torres G E S; de Oliveira A P R; Sesso R; Sawaya A L; (2017). Effectiveness of a 16-

Pham Van, Phu and Nguyen Van ; Hoan ; Bertrand Salvignol ; Serge Treche ; Frank Tammo ; Wieringa ; Nguyen Cong ; Khan ; Pham Duy ; Tuong ; Jacques Berger ;. (2010). Complementary Foods Fortified with Micronutrients Prevent Iron Deficiency and Anemia in Vietnamese infants. *Journal of Nutrition*, 140, pp.2241-2247.

Phu Pham V, Hoan Nguyen V; Salvignol Bertrand and Treche Serge; Wieringa Frank T; Dijkhuizen Marjoleine A; Khan Nguyen C; Tuong Pham D; Schwartz Helene; Berger Jacques; (2012). A Six-Month Intervention With Two Different Types Of Micronutrient-Fortified Complementary Foods Had Distinct Short- And Long-Term Effects On Linear And Ponderal Growth Of Vietnamese Infants. *Journal of Nutrition*, 142(9), pp.1735-1740.

Phuong Nguyen, Grajeda R and Melgar P; Marcinkevage J; Flores R; Martorell R; (2008). Weekly may be as efficacious as daily folic acid supplementation in improving folate status and lowering serum homocysteine concentrations in Guatemalan women. *Journal of Nutrition*, 138(8), pp.1491-1498.

Nguyen P H, Kim S S; Sanghvi T and Mahmud Z; Tran L M; Shabnam S; Aktar B; Haque R; Afsana K; Frongillo E A; Ruel M T; Menon P; (2017). Integrating nutrition interventions into an existing Maternal, Neonatal, and Child Health program increased maternal dietary diversity, micronutrient intake, and exclusive breastfeeding practices in Bangladesh: results of a cluster-randomized program evaluation. *Journal of Nutrition*, 147(12), pp.2326-2337.

Pimpão Martins, Fernanda Demutti and Pedrosa Leal; Luciana; Pereira Linhares; Francisca Márcia; da Silva Santos; Alessandro Henrique; de Oliveira Leite Gerlaine; Pontes Cleide Maria; (2018). Effect of the board game as educational technology on schoolchildren’s knowledge on breastfeeding. *Revista Latino-Americana de Enfermagem (RLAE)*, 26, pp.1-12.

Piperata Barbara Ann, McSweeney Kendra and Murrieta Rui Sergio; Adams Cristina; Brondizio Eduardo S; Chernela Janet; Hicks Kathryn A; Morsello Carla; Wutich Amber; Brewis Alexandra; (2016). Conditional Cash Transfers, Food Security, and Health. *Current Anthropology*, 57, pp.806-826.

Potdar Ramesh D, Sahariah Sirazul A; Gandhi Meera and Kehoe Sarah H; Brown Nick; Sane Harshad; Dayama Monika; Jha Swati; Lawande Ashwin; Coakley Patsy J; Marley-Zagar Ella; Chopra Harsha; Shivshankaran Devi; Chheda-Gala Purvi; Muley-Lotankar Priyadarshini; Subbulakshmi G; Wills Andrew K; Cox Vanessa A; Taskar Vijaya; Barker David J. P.; (2014). Improving women's diet quality preconceptionally and during gestation: effects on birth weight and prevalence of low birth weight—a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project). *American Journal of Clinical Nutrition*, 100(5), pp.1257-1268.

Prado EL, Adu-Afarwuah S and Lartey A; et al; (2016). Effects of pre- and post-natal lipid-based nutrient supplements on infant development in a randomized trial in Ghana. , , pp..

Kalra P, Das V and Agarwal A; Kumar M; Ramesh V; Bhatia E; Gupta S; Singh S; Saxena P; Bhatia V.; (2012). Effect of vitamin D supplementation during pregnancy on neonatal mineral homeostasis and anthropometry of the newborn and infant. *British Journal of Nutrition*, 108(6), pp.1052-1058.

Chatterjee P, Kumar P and Kandel R; Madan R; Tyagi M; Kumar D A; Khan M A; Desai G; Chaudhary P; Gupta S; Grover K; Dey A B. (2018). Nordic walking training and nutritional supplementation in pre-frail older Indians: an open-labelled experimental pre-test and post-test pilot study to develop intervention model.. *BMC Geriatrics*, 18(1), pp.10.

Quizarán-Plata T, Villarreal L M and Esparza J R; Bolaños A V; Díaz R Z ;. (2014). Educational program had a positive effect on the intake of fat, fruits and vegetables and physical activity in students attending public elementary schools of Mexico. Nutricion hospitalaria, 30(3), pp.552-561.

Radhakrishna K V, Hemalatha R and Geddam B J; Kumar P A; Balakrishna N ; Shatrugna V ;. (2013). Effectiveness of Zinc Supplementation to Full Term Normal Infants: A Community Based Double Blind, Randomized, Controlled, Clinical Trial. PLoS One, 8(5), pp..

Rahman A. (2016). Universal food security program and nutritional intake: Evidence from the hunger prone KBK districts in Odisha. Food Policy, 63, pp.73-86.

Bahl Rajiv, Bhandari Nita and Wahed M A; Kumar G T; Bhan M K; . (2002). Vitamin A supplementation of women postpartum and of their infants at immunization alters breast milk retinol and infant vitamin A status.. *Journal of Nutrition*, 132(11), pp.3243–3248.

Ramakrishnan U, Neufeld L M and Gonzalez-Cossio T ; Villalpando S; Garcia-Guerra A ; Rivera J ; Martorell R ; . (2004). Multiple micronutrient supplements during pregnancy do not reduce anemia or improve iron status compared to iron-only supplements in Semirural Mexico. *American Society for Nutritional Sciences*, , pp..

Rath Suchitra, Prost Audrey and Samal Subhashree ; Pradhan Hemanta ; Copas Andrew ; Gagrai Sumitra ; Rath Shibanand ; Gope Raj Kumar; Nair Nirmala ; Tripathy Prasanta ; Bhatia Komal ; Rose-Clarke Kelly ; . (2020). Community youth teams facilitating participatory adolescent groups, youth leadership activities and livelihood promotion to improve school attendance, dietary diversity and mental health among adolescent girls in rural eastern India: protocol for a cluster-randomised controlled trial. *Trials*, 21, pp.1-14.

Luo R, Yue A and Zhou H ; Shi Y ; Zhang L ; Martorell R ; Medina A ; Rozelle S ; Sylvia S ;. (2017). The effect of a micronutrient powder home fortification program on anemia and cognitive outcomes among young children in rural China: a cluster randomized trial. BMC Public Health, 17(1), pp.1-16.

Rivas M, McArthur T and Mullally C ;. (2020). All They’re Cracked Up to Be?: The Impact of Chicken Transfers in Guatemala . , pp.51. Available at: function URL() { [native code] }.

Roberts S B, Franceschini M A; Krauss A and Lin P Y; de Sa; A B; Co R; Taylor S; Brown C; Chen O; Johnson E J; Pruzensky W; Schlossman N; Bale C; Tony Wu; K C; Hagan K; Saltzman E; Muentener P; (2017). A pilot randomized controlled trial of a new supplementary food designed to enhance cognitive performance during prevention and treatment of malnutrition in childhood. Current Developments in Nutrition, 1 (11) (no pagination), pp..

Rohner F, Zimmermann M B and Amon R J; Vounatsou P; Tschanne A B; N’Goran E K; Nindjin C; cacou M C; Te-Bonle M D; Aka H; Sess D E; Utzinger J; Hurrell R F; (2010). In a randomized controlled trial of iron fortification, anthelmintic treatment, and intermittent preventive treatment of malaria for anemia control in Ivorian children, only anthelmintic treatment shows modest benefit. Journal of Nutrition, 140(3), pp.635-641.

Rosales F J, Kang Y and Pfeiffer B ; Rau A ; Romero-Abal M E; Erhardt J G; Solomons N W; Biesalski H K.; (2004). Twice the recommended daily allowance of iron is associated with an increase in plasma alpha -1 antichymotrypsin concentrations in Guatemalan school-aged children.. Nutrition Research, 24(11), pp.e12831-e12831.

Roschnik N, Parawan A and Baylon MA ; et al ;. (2004). Weekly iron supplements given by teachers sustain the haemoglobin concentration of schoolchildren in the Philippines. , , pp..

Ruiz Esparza Cisneros, Josefina and Vasconcelos-Ulloa Javier J; Gonzalez-Mendoza Daniel; Beltran-Gonzalez Guillermo; Diaz-Molina Raul; (2020). Effect of dietary intervention with a legume-based food product on malondialdehyde levels, HOMA index, and lipid profile. *Efecto de una intervencion dietetica con un producto alimenticio a base de leguminosas sobre los niveles de malondialdehido and indice HOMA y perfil de lipidos*, 67(4), pp.235-244.

Rutherford Diana Duff and Burke Holly M; Cheung Kelly K; Field Samuel H; (2016). Impact of an Agricultural Value Chain Project on Smallholder Farmers, Households, and Children in Liberia. *World Development*, 83(0), pp.70-83.

Ryckman Theresa, Robinson Margaret and Pedersen Courtney; Bhattacharya Jay; Bendavid Eran; (2019). Impact of Feed the Future initiative on nutrition in children aged less than 5 years in sub-Saharan Africa: difference-in-differences analysis. *BMJ (Clinical research ed.*)*, 367, pp.l6540.

Sahu M, Das V and Aggarwal A.; Rawat V.; Saxena P.; Bhatia V.;. (2009). Vitamin D replacement in pregnant women in rural north India: a pilot study.. , pp..

Sakha K and Behbahan A G. (2008). Training for perfect breastfeeding or metoclopramide: Which one can promote lactation in nursing mothers?. Breastfeeding Medicine, 3(2), pp.120-123.

Samson K L I, Loh S P; Khor G L; Shariff Z M; Yelland L N; Leemaqz S and Makrides M ; Hutcheon J A; Sulistyongrung D C; Yu J J; Roche M L; De-Regil L M; Green T J; Karakochuk C D ; (2020). Effect of once weekly folic acid supplementation on erythrocyte folate concentrations in women to determine potential to prevent neural tube defects: A randomised controlled dose-finding trial in Malaysia. *BMJ Open*, 10(e034598), pp..

Sanjay Kinra, Sarma K V. R and Ghafoorunissa ; Mendu V V. R; Radhakrishnan Ravikumar ; Viswanthan Mohan ; Wilkinson I B; Cockcroft J R; Smith G D; Ben-Shlomo Y ; (2008). Effect of integration of supplemental nutrition with public health programmes in pregnancy and early childhood on cardiovascular risk in rural Indian adolescents: long term follow-up of Hyderabad nutrition trial.. *BMJ*, 337(a605), pp..

Santos Ina S, Matijasevich Alicia and Assuncao Maria Cecilia F; Valle Neiva C.J; Horta Bernardo L; Goncalves Helen D; Gigante Denise P; Martins Jose C; Pello Grotel ; Victora Cesar G ; (2015). Promotion of Weight Gain in Early Childhood Does Not Increase Metabolic Risk in Adolescents: A 15-Year Follow-Up of a Cluster-Randomized Controlled Trial.. *The Journal of nutrition*, 145(12), pp.2749-55.

Saville N M, Shrestha B P; Style S and Harris-Fry H ; Beard B J; Aman Sen ; Sonali Jha ; Anjana Rai ; Vikas Paudel ; Raghbendra Sah ; Puskar Paudel ; Copas A ; Bishnu Bhandari ; Rishi Neupane ; Morrison J ; Gram L ; Pulkki-Brannstrom A M; Skordis-Worrall J ; Machhindra Basnet ; Pee S de; Hall A ; Harthan J ; Thondoo M ; Klingberg S ; Messick J ; Manandhar D S . [et al]:. (2018). Impact on birth weight and child growth of Participatory Learning and Action women's groups with and without transfers of food or cash during pregnancy: findings of the low birth weight South Asia cluster-randomised controlled trial (LBWSAT) in Nepal.. *PLoS ONE, 13*(5), pp.e0194064.

Savitri Ary I, Idris Nikmah S; Indawati Wahyuni and Saldi Siti Rizny F; Amelia Dwirani ; Baharuddin Mohammad ; Sastroasmoro Sudigdo ; Grobbee Diederick E; Uiterwaal Cuno S P M;. (2016). BReastfeeding Attitude and Volume Optimization (BRAVO) trial: study protocol for a randomized controlled trial.. *Trials, 17*(1), pp.271.

Sayyad-Neerkorn Jessica, Langendorf Céline and Roederer Thomas ; Doyon Stéphane ; Mamaty Abdoul-Aziz ; Wol-Messe Lynda ; Manzo Mahamane L; Harouna Souley ; de Pee Saskia ; Grais Rebecca F.;. (2015). Preventive Effects Of Long-Term Supplementation With 2 Nutritious Food Supplements In Young Children In Niger.. *Journal of Nutrition, 145*(11), pp.2596-2603.

Sazawal S, Habib A K M A and Dhingra U ; Dutta A ; Dhingra P ; Sarkar A ; Deb S ; Alam J ; Husna A ; Black R E;: (2013). Impact of micronutrient fortification of yoghurt on micronutrient status markers and growth - a randomized double blind controlled trial among school children in Bangladesh.. *BMC public health, 13*(514), pp..
Sazawal S, Dhingra U and Dhingra P ; Dutta A ; Deb S ; Kumar J ; Devi P ; Prakash A ; (2018). Efficacy of high zinc biofortified wheat in improvement of micronutrient status, and prevention of morbidity among preschool children and women - A double masked, randomized, controlled trial 11 Medical and Health Sciences 1117 Public Health and Health Services. *Nutrition journal*, 17, pp..

Schlossman Nina and Balan Adrian . (2015). *Canned Herring for Prevention of Childhood Malnutrition During the Early Rainy Season in Rural Guinea-Bissau*. :

Schlossman N, Brown C and Batra P ; Sa A B. de; Balan I ; Balan A ; Gamache M G; Wood L ; Pruzensky W ; Saltzman E ; Roberts S B; Bale C ;. (2017). A randomized controlled trial of two ready-to-use supplementary foods demonstrates benefit of the higher dairy supplement for reduced wasting in mothers, and differential impact in infants and children associated with maternal supplement response.. *Food and Nutrition Bulletin*, 38(3), pp.275-290.

Schram Ashley, Labonte Ronald and Baker Phillip ; Friel Sharon ; Reeves Aaron ; Stuckler David ;. (2015). The role of trade and investment liberalization in the sugar-sweetened carbonated beverages market: a natural experiment contrasting Vietnam and the Philippines.. *Globalization and health*, 11, pp.41.

Schreinemachers Pepijn, Md Nasir and Uddin ; Mei-huey Wu ; Peter Hanson ; Shahabuddin Ahmad ;. (2016). Farmer training in off-season vegetables: Effects on income and pesticide use in Bangladesh. *Food policy*, 61, pp.132-140.

Schulze K J, Mehra S and Saijuddin Shaikh ; Hasmot Ali ; Shamim A A; Wu L S. F; Mitra M ; Arguello M A; Kmush B ; Sungpuag P ; Udomkesmelee E ; Merrill R ; Klemm R D. W; Ullah B ; Labrique A B; West K P; Jr ; Christian P .; (2019). Antenatal multiple micronutrient supplementation compared to iron-folic acid affects micronutrient status but does not eliminate deficiencies in a randomized controlled trial among pregnant women of rural Bangladesh. *Journal of Nutrition*, 149(7), pp.1260-1270.

Schümann K, Romero-Abal M E and Mäurer A ; Luck T ; Beard J ; Murray-Kolb L ; Bulux J ; Mena I ; Solomons N W; Schümann K ; Romero-Abal M E; Mäurer A ; Luck T ; Beard J ; Murray-Kolb L ; Bulux J ; Mena I ; Solomons N W;.. (2005). Haematological response to haem iron or ferrous sulphate mixed with refried black beans in moderately anaemic Guatemalan pre-school children. *Public Health Nutrition*, 8, pp.572-581.

Seal A, Kafwembe E and Kassim I A. R; Hong M ; Wesley A ; Wood J ; Abdalla F ; van den Briel ; T ; Seal Andrew ; Kafwembe Emmanuel ; Kassim Ismail A. R; Hong Mei ; Wesley Annie ; Wood John ; Abdalla Fathia ; van den Briel ; Tina .; (2008). Maize meal fortification is associated with improved vitamin A and iron status in adolescents and reduced childhood anaemia in a food aid-dependent refugee population. *Public Health Nutrition*, 11, pp.720-728.

Seema Gulati, Anoop Misra and Rajneesh Tiwari ; Meenu Sharma ; Pandey R M; Yadav C P;. (2017). Effect of high-protein meal replacement on weight and cardiometabolic profile in overweight/obese Asian Indians in North India.. *British Journal of Nutrition*, 117(11), pp.1531-1540.

Seetha Anitha, Tsusaka Takuji W and Munthali Timalizge W; Musukwa Maggie ; Mwangwela Agnes ; Kalumikiza Zione ; Manani Tinna ; Kachulu Lizzie ; Kumwenda Nelson ; Musoke Mike ; Okori Patrick .. (2018). How immediate and significant is the outcome of training on diversified diets, hygiene and food safety? An effort to mitigate child undernutrition in rural Malawi.. *Public health nutrition*, 21(6), pp.1156-1166.

Semba R D, Munasir Z and Akib A ; Melikian G ; Permaesih D ; Muherdiyantiningsih D ; Marituti S ; Muhilal S .. (2001). Integration of vitamin A supplementation with the Expanded Programme on Immunization: lack of impact on morbidity or infant growth. *Acta Paediatrica*, 90(10), pp.1107-1111.

Senarath U, Katulanda P and Fernando D N; Kalupahana N S; Partheepan K ; Jayawardena R ; Katulanda G ; Dibley M J; (2019). mHealth nutrition and lifestyle intervention (mHENAL) to reduce cardiovascular disease risk in a middle-aged, overweight and obese population in Sri Lanka: study protocol for a randomized controlled trial. *Contemporary clinical trials communications*, 16, pp..

Sethi V, Bhanot A and Bhattacharjee S ; Gope R ; Sarangi D ; Nath V ; Nair N ; Singh U ; Daniel A ; Parhi R N; Sinha .. (2019). Integrated multisectoral strategy to improve girls’ and women’s nutrition before conception, during pregnancy and after birth in India (Swabhimaan): protocol for a prospective, non-randomised controlled evaluation. : , pp.9. function URL() { [native code] }.

Sevinc O, Bozkurt A I and Gundogdu M ; Bas Aslan U; Agbuga B ; Aslan S ; Dikbas E ; Gokce Z .. (2011). Evaluation of the effectiveness of an intervention program on preventing childhood obesity in Denizli, Turkey.. *Turkish Journal of Medical Sciences*, 41(6), pp.1097-1105.

Sgambato M R and Cunha D B; Henriques V T; Estima C C P; Souza B S N; Pereira R A; Yokoo E M; Paravidino V B; Sichieri R. (2016). PAAPPAS community trial protocol: a randomized study of obesity prevention for adolescents combining school with household intervention. *BMC Public Health*, 16(809), pp..

Shahab-Ferdows S, Anaya-Loyola M A and Vergara-Castaneda H; Rosado J L; Keyes W R; Newman J W; Miller J W; Allen L H. (2012). Vitamin B-12 supplementation of rural Mexican women changes biochemical vitamin B-12 status indicators but does not affect hematology or a bone turnover marker. *Journal of Nutrition*, 142(10), pp.1881-1887.

Sharifirad G R, Tol A and Mohebi S; Matlabi M; Shahnazi H; Shahsiah M; (2013). The effectiveness of nutrition education program based on health belief model compared with traditional training. *Journal of Education and Health Promotion*, 2(15), pp..

Shaveta Monga, Rajbir Sachdeva and Anita Kochhar; (2007). Clinical and haematological profile of urban working women as influenced by nutritional counselling.. *Journal of Human Ecology*, 22(2), pp.149-152.

Sheng XiaoYang, Tong MeiLing and Zhao DongMei; Leung TingFan; Zhang Feng; Hays N P; Ge J; Ho WingMan; Northington R; Terry D L; Yao ManJiang; (2014). Randomized controlled trial to compare growth parameters and nutrient adequacy in children with picky eating behaviors who received nutritional counseling with or without an oral nutritional supplement.. *Nutrition and Metabolic Insights*, 7, pp.85-94.
Sheng XiaoYang, Wang JunLi and Li Feng; Ouyang FengXiu; Ma JingQiu; (2019). Effects of dietary intervention on vitamin B12 status and cognitive level of 18-month-old toddlers in high-poverty areas: a cluster-randomized controlled trial. *BMC Pediatrics*, 19(334), pp..

Shet A S, Zwarenstein M and Rao A; Jebaraj P; Arumugam K; Mascarenhas M; Klar N; Galanti R M;. (2017). The kap 2 study: preliminary results from a pragmatic cluster randomized trial of a community education intervention to support childhood anemia control in India. *Blood*, 130(Supp 1), pp..

Shrestha Akina, Schindler Christian and Odermatt Peter; Gerold Jana; Erismann Severine; Sharma Subodh; Koju Rajendra; Utzinger Jurg; Cisse Gueladio; (2020). Nutritional and health status of children 15 months after integrated school garden, nutrition, and water, sanitation and hygiene interventions: a cluster-randomised controlled trial in Nepal. *BMC public health*, 20, pp.158.

Siddiqua T J, Ahmad S M; Ahsan K B; Rashid M and Roy A ; Rahman S M; Shahab-Ferdows S ; Hampel D ; Ahmed T ; Allen L H; Raqib R ; (2016). Vitamin B12 supplementation during pregnancy and postpartum improves B12 status of both mothers and infants but vaccine response in mothers only: a randomized clinical trial in Bangladesh. European Journal of Nutrition, 55(1), pp.281-293.

Siega-Riz Anna M, Estrada Del Campo; Yanire and Kinlaw Alan ; Reinhart Gregory A; Allen Lindsay H; Shahab-Ferdows Setareh ; Heck Jeff ; Suchindran Chirayath M; Bentley Margaret E.; (2014). Effect of supplementation with a lipid-based nutrient supplement on the micronutrient status of children aged 6-18 months living in the rural region of Intibuca, Honduras. Paediatric and perinatal epidemiology, 28(3), pp.245-54.

Siekmann J H and Allen L H; Bwibo N O; Demment M W; Murphy S P; Neumann C G; (2003). Kenyan school children have multiple micronutrient deficiencies, but increased plasma vitamin B-12 is the only detectable micronutrient response to meat or milk supplementation. Journal of Nutrition, 133, pp.3972S-3980S.

Silva C F. da, Nunes L M; Schwartz R and Giugliani E R. J; (2016). Effect of a pro-breastfeeding intervention on the maintenance of breastfeeding for 2 years or more: randomized clinical trial with adolescent mothers and grandmothers. BMC Pregnancy and Childbirth, 16(97), pp..

Singh Abhijeet, Park Albert and Dercon Stefan ;. (2014). *School Meals As A Safety Net: An Evaluation Of The Midday Meal Scheme In India*. Completed: , pp.. Available at: function URL() { [native code] }.

Singh Veena, Ahmed Saifuddin and Dreyfuss M L; Kiran Usha ; Chaudhery D N; Srivastava V K; Ahuja R C; Baqui A H; Darmstadt G L; Santosham Mathuram ; West Jr K P;; (2017). An integrated nutrition and health program package on IYCN improves breastfeeding but not complementary feeding and nutritional status in rural northern India: a quasi-experimental randomized longitudinal study.. *PLoS ONE*, 12(9), pp.e0185030.

Sivan Y S, Jayakumar Y A; Arumugham C and Sundaresan A ; Balachandran C ; Job J ; Deepa S S; Shihina S L; Damodaran M ; Soman C R; Raman Kutty V; Sarma P S.; (2001). Impact of beta-carotene supplementation through red palm oil. , , pp..

Sivan Y S, Jayakumar Y A; Arumughan C and Sundaresan A ; Jayalekshmy A ; Suja K P; Kumar D R. S; Deepa S S; Malathi Damodaran ; Soman C R; Kutty V R; Sarma P S.; (2002). Impact of vitamin A supplementation through different dosages of red palm oil and retinol palmitate on preschool children.. *Journal of Tropical Pediatrics*, 48(1), pp.24-28.

Skau J K H, Touch B and Chhoun C ; Chea M ; Unni U S; Makurat J ; Filteau S ; Wieringa F T; Dijkhuizen M A; Ritz C ; Wells J C; Berger J ; Friis H ; Michaelsen K F; Roos N ;. (2015). Effects of animal source food and micronutrient fortification in complementary food products on body composition, iron status, and linear growth: a randomized trial in Cambodia.. *The American Journal of Clinical Nutrition*, 101(4), pp.742-51.

Skordis-Worrall J, Sinha R and Kumar Ojha ; A ; Sarangi S ; Nair N ; Tripathy P ; Sachdev H S; Bhattacharyya S ; Gope R ; Rath S ; et al ;. (2016). Protocol for the economic evaluation of a community-based intervention to improve growth among children under two in rural India (CARING trial). *BMJ open*, 6, pp.e012046.

Skugarevsky Oleg, Wade Kaitlin H and Richmond Rebecca C; Martin Richard M; Tilling Kate; Patel Rita; Vilchuck Konstantin; Bogdanovich Natalia; Sergeichick Natalia; Davey Smith; George; Gillman Matthew W; Oken Emily; Kramer Michael S.; (2014). Effects of promoting longer-term and exclusive breastfeeding on childhood eating attitudes: a cluster-randomized trial. *International Journal of Epidemiology*, 43, pp.1263-1271.

Slo, E and Astone NM; B Gebrian.; (2010). The Impact of Fathers’ Clubs on Child Health in Rural Haiti. , , pp..

Soekarjo DD, Pee SS and Kusin JA; Schreurs WH; Schultink W; Muhilal et al.; (2004). Effectiveness of weekly vitamin A (10 000 IU) and iron (60 mg) supplementation for adolescent boys and girls through schools in rural and urban East Java, Indonesia., , pp..

Solomon Asfaw, Robert Pickmans and Federica Alfani; Benjamin Davis; (2016). *Productive Impact of Ethiopia’s Social Cash Transfer Pilot Programme: A From Protection to Production (PtoP) report*. : FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, pp.. Available at: function URL() { [native code] }.

Stein A D, Wang M and Rivera J A; Martorell R; Ramakrishnan U; . (2012). Auditory-and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.. Journal of Nutrition, 142(8), pp.1577-1581.

Stevens Briony, Watt Kerianne and Brimbecome Julie; Clough Alan; Judd Jenni A; Lindsay Daniel; . (2018). A village-matched evaluation of providing a local supplemental food during pregnancy in rural Bangladesh: a preliminary study.. BMC pregnancy and childbirth, 18, pp.286.

Stewart C P, Caswell B and Iannotti L ; Lutter C ; Arnold C D; Chipatala R ; Prado E L; Maleta K ; . (2019). The effect of eggs on early child growth in rural Malawi: the Mazira Project randomized controlled trial. American journal of clinical nutrition, , pp..

Stewart C P, Dewey K G; Lin A and Pickering A J; Byrd K A; Jannat K ; Ali S ; Rao G ; Dentz H N; Kiprotich M ; Arnold C D; Arnold B F; Allen L H; Shahab-Ferdows S ; Ercumen A ; Grembi J A; Naser A M; Rahman M ; Unicom L ; Colford J M; Luby S P; Null C ; . (2019). Effects of lipid-based nutrient supplements and infant and young child feeding counseling with or without improved water, sanitation, and hygiene (WASH) on anemia and micronutrient status: results from 2 cluster-randomized trials in Kenya and Bangladesh.. American Journal of Clinical Nutrition, 109(1), pp.148-164.

Stoltzfus RJ, Kvalsvig JD and Chwaya HM; Montresor A; Albonico M; . (2001). Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. , , pp..

Sumra Kureishy, Khan G N and Shabina Arif ; Khizar Ashraf ; Cespedes A ; Habib M A; Imtiaz Hussain ; Asmat Ullah ; Ali Turab ; Imran Ahmed ; Shehla Zaidi ; Soofi S B;.. (2017). A mixed methods study to assess the effectiveness of food-based interventions to prevent stunting among children under-five years in Districts Thatta and Sujawal, Sindh Province, Pakistan: study protocol.. *BMC Public Health*, 17(24), pp..

Sutrisna A, Vossenaar M and Poonawala A ; Mallipu A ; Izwardy D ; Menon R ; Tumilowicz A ;. (2018). Improved Information and Educational Messages on Outer Packaging of Micronutrient Powders Distributed in Indonesia Increase Caregiver Knowledge and Adherence to Recommended Use.. *Nutrients*, 10(6), pp..

Taneja Sunita, Strand Tor A and Kumar Tivendra; Mahesh Madhu; Mohan Sanjana; Manger Mari S; Refsum Helga; Yajnik Chittaranjan S; Bhandari Nita. (2013). Folic acid and vitamin B-12 supplementation and common infections in 6-30-mo-old children in India: a randomized placebo-controlled trial. *The American journal of clinical nutrition*, 98(3), pp.731-7.

Teal Francis, Zeitlin Andrew and Caria Stefano ;. (2010). Heterogeneous returns and the persistence of agricultural technology adoption. , , pp..

Tesfaye A, Bogale A and Namara R E; Bacha D ;. (2008). The impact of small-scale irrigation on household food security: The case of Filtino and Godino irrigation schemes in Ethiopia. , , pp..

Teshome Emily M, Andang'o Pauline E. A; Osoti Victor and Terwel Sofie R; Otieno Walter ; Demir Ayşe Y; Prentice Andrew M; Verhoef Hans ;. (2017). Daily home fortification with iron as ferrous fumarate versus NaFeEDTA: a randomised, placebo-controlled, non-inferiority trial in Kenyan children. *BMC Medicine, 15*, pp.1-16.

Tessema M, Gunaratna N and Donato K ; Cohen J ; McConnell M ; Belayneh D ; Brouwer I ; Belachew T ; De Groote H ;. (2016). Translating the impact of quality protein maize into improved nutritional status for Ethiopian children: study protocol for a randomized controlled trial. *BMC Nutrition*, 2(54), pp.13.

Thach Duc Tran, Fisher J and Hanieh S ; Tuan Tran ; Simpson J A; Ha Tran ; Biggs B A;. (2015). Antenatal iron supplementation regimens for pregnant women in rural Vietnam and subsequent haemoglobin concentration and anaemia among their infants.. *PLoS ONE*, 10(4), pp.e0125740.

Toure D, Rawat R and Stoltzfus R J; Harvey D ; Mwanamwenge M ; Pelletier D L; (2016). The effects of a nutrition-sensitive agricultural intervention on social support, food security and maternal self-efficacy in complementary feeding. Cochrane Central Register of Controlled Trials, 2017(2), pp..

Traore T, Vieu M C and Alfred T S; Serge T .; (2005). Effects of the duration of the habituation period on energy intakes from low and high energy density gruels by Burkinabe infants living in free conditions.. Appetite, 45(3), pp.279-286.

Tsinigo E, Jose Sanchez S and Tawiah E ;. (2020). The Impact of a Digital Credit for Small-Scale Farmers in Ghana. , , pp..

Tufa Adane Hirpa, Alene Arega D; Manda Julius and Akinwale M G; Chikoye David ; Feleke Shiferaw ; Wossen Tesfamicheal ; Manyong Victor ;. (2019). The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi. World Development, 124, pp.104631.

Tylleskär T, Jackson D and Meda N ; Engebretsen I M; Chopra M ; Diallo A H; Doherty T ; Ekström E C; Fadnes L T; Goga A ; Kankasa C ; Klungsøyr J I; Lombard C ; Nankabinwa V ; Nankunda J K; Van de Perre P ; Sanders D ; Shanmugam R ; Sommerfelt H ; Wamani H ; Tumwine J K; PROMISE-EBF Study Group;. (2011). Exclusive breastfeeding promotion by peer counsellors in sub-Saharan Africa (PROMISE-EBF): A cluster-randomised trial.. The Lancet, 378(9789), pp.420-427.

Umeta M, West CE and Haidar J; Deurenberg P; Hautvast JG; (2000). Zinc supplementation and stunted infants in Ethiopia: a randomised controlled trial. , , pp..

Untoro J, Karyadi E and Wibowo L; Erhardt M W; Gross R; (2005). Multiple micronutrient supplements improve micronutrient status and anemia but not growth and morbidity of Indonesian infants: a randomized, double-blind, placebo-controlled trial. , , pp..

USAID. (2019). Endline Report on Impacts Associated with the Bangladesh Agricultural Value Chains Project. , , pp..

Usha Ramakrishnan, Nguyen P H and Gonzalez-Casanova I; Hoa Pham; Hao Wei; Hieu Nguyen; Truong T V; Son Nguyen; Harding K B; Reinhart G A; Neufeld L M; Martorell R; (2016). Neither preconceptional weekly multiple micronutrient nor iron-folic acid supplements affect birth size and gestational age compared with a folic acid supplement alone in rural Vietnamese women: a randomized controlled trial. *Special Issue: Do we need preconception nutrition interventions to improve birth outcomes beyond the prevention of neural tube defects? Current knowledge and future directions.*, 146(7), pp.1445S-1452S.

Liandre´ F van der Merwe, Sophie E Moore; Anthony J Fulford; Katherine E Halliday; Saikou Drammeh and Stephen Young ;. (2012). Long-chain PUFA supplementation in rural African infants: a randomized controlled trial of effects on gut integrity, growth, and and cognitive development. . , pp.

Verbowski Vashti, Michaux Kristina and McLean Judy; Barr Susan I; Green Tim J; Talukder Zaman; Hou Kroeu; Hoing Ly Sok; Anderson Victoria; Gibson Rosalind; Li Kathy H; Lynd Larry D.; (2018). Effect of enhanced homestead food production and aquaculture on dietary intakes of women and children in rural Cambodia: A cluster randomized controlled trial. *Maternal & Child Nutrition*, 14(3), pp.e12581.

Wang Shuaishuai, Ding Yiling and He Ping ; Li Cuishan ; Li Daocheng ; Li Yanling ; Lu Aiping ; Su Zhaojuan ; Zhang Chi ;. (2018). Efficacy of Chinese herbal medicine Zengru Gao to promote breastfeeding: a multicenter randomized controlled trial. BMC complementary and alternative medicine, 18, pp.53-53.

Watcharanon W, Kaewrudee S and Sontrapa S ; Somboonporn W ; Srisaenpang P ; Panpanit L ; Pongchayakul C ;. (2018). Effects of sunlight exposure and vitamin D supplementation on vitamin D levels in postmenopausal women in rural Thailand: a randomized controlled trial. Complementary Therapies in Medicine, 40, pp.243-247.
Webb K et al. (2018). Final Evaluation of the School Meals Programme in Malawi with support from United States Department of Agriculture, and the Governments of Brazil and the United Kingdom 2013 to 2015. , , pp..

West K P, Shamim A A; Mehra S and Labrique A B; Ali H ; Shaikh S ; Klemm R D W; Wu L S F; Mitra M ; Haque R ; Hanif A A M; Massie A B; Merrill R D; Schulze K J; Christian P; . (2014). Effect of maternal multiple micronutrient vs iron-folic acid supplementation on infant mortality and adverse birth outcomes in rural Bangladesh: the JiVitA-3 randomized trial.. JAMA and Journal of the American Medical Association, 312(24), pp.2649-2658.

Wieringa F T, Berger J and Dijkhuizen M A; Hidayat A; Ninh N X; Utomo B; Wasantwisut E; Winichagoon P; (2007). Combined iron and zinc supplementation in infants improved iron and zinc status, but interactions reduced efficacy in a multicountry trial in Southeast Asia.. Journal of Nutrition, 137(2), pp.466-471.

Wu Q, Huang Y and van Velthoven M H; Wang W ; Chang S ; Zhang Y ;. (2019). The effectiveness of using a WeChat account to improve exclusive breastfeeding in Huzhu County Qinghai Province, China: protocol for a randomized control trial.. *BMC public health*, 19(1), pp.1603.

Xian Jinli, Zeng Mao and Zhu Rui ; Cai Zhengjie ; Shi Zumin ; Abdullah Abu S; Zhao Yong ;. (2020). Design and implementation of an intelligent monitoring system for household added salt consumption in China based on a real-world study: a randomized controlled trial.. *Trials*, 21(1), pp.349.

Xu HaiQuan, Li YanPing and Zhang Qian ; Hu XiaoQi ; Liu AiLing ; Du SongMing ; Li TingYu ; Guo HongWei ; Li Ying ; Xu GuiFa ; Liu WeiJia ; Ma Jun ; Ma GuanSheng . (2017). Comprehensive school-based intervention to control overweight and obesity in China: a cluster randomized controlled trial.. *Asia Pacific Journal of Clinical Nutrition*, 26(6), pp.1139-1151.

Xu Jianwei, Tang Biwei and Liu Min ; Bai Yamin ; Yan Wei ; Zhou Xue ; Xu Zhihua ; He Jun ; Jin Donghui ; Sun Jixin ; Li Yuan ; He Feng J ; MacGregor Graham A ; Wu Jing ; Zhang Puhong . (2020). A town level comprehensive intervention study to reduce salt intake in China: protocol for a cluster randomised controlled trial.. *BMJ open*, 10(1), pp.e032976.

yah RA, Mwaniki DL and Magnussen P ; Tedstone AE ; Marshall T ; Alusala D ; et al . (2007). The effects of maternal and infant vitamin A supplementation on vitamin A status: a randomised trial in Kenya. , , pp..

Yajnik C S, Lubree H G; Thuse N V; Ramdas L V; Deshpande S S; Deshpande V U; Deshpande J A; Uradey B S; Ganpule A A; Naik S S; Joshi N P; Farrant H and Refsum H . (2007). Oral vitamin B12 supplementation reduces plasma total homocysteine concentration in women in India.. *Asia Pacific Journal of Clinical Nutrition*, 16(1), pp.103-109.

Yang P, Liu W and Shan X ; Li P ; Zhou J ; Lu J ; Li Y . (2008). Effects of training on acquisition of pest management knowledge and skills by small vegetable farmers. , , pp..

Yeshalem Mulugeta Demilew1 and Getu Degu Alene1; Tefera Belachew2. (). Effect of guided counseling on nutritional status of pregnant women in West Gojjam zone, Ethiopia: a cluster-randomized controlled trial. , , pp..

Young Melissa F, Girard Amy Webb; Mehta Rukshan and Srikantiah Sridhar ; Gosdin Lucas ; Menon Purnima ; Ramakrishnan Usha ; Martorell Reynaldo ; Avula Rasmi ;. (2018). Acceptability of multiple micronutrient powders and iron syrup in Bihar, India.. *Maternal & child nutrition*, 14(2), pp.e12572.

Yu HongJie, Li Fang and Hu YongFeng ; Li ChangFeng ; Yuan Shuai ; Song Yong ; Zheng MiaoBing ; Gong Jie ; He QiQiang ;. (2020). Improving the metabolic and mental health of children with obesity: a school-based nutrition education and physical activity intervention in Wuhan, China.. *Nutrients*, 12(1), pp.194.

Zambrana L E, McKeen S and Ibrahim H; Zarei I; Borresen E C; Doumbia L; Bore A; Cissoko A; Douyon S; Kone K; Perez J; Perez C; Hess A; Abdo Z; Sangare L; Maiga A; Becker-Dreps S; Yuan LiJuan; Koita O; Vilchez S; Ryan E P. (2019). Rice bran supplementation modulates growth, microbiota and metabolome in weaning infants: a clinical trial in Nicaragua and Mali. *Scientific Reports*, 9(1), pp.13919.

Zhang X, Chen K and Qu P ; Liu Y X; Li T Y;. (2010). Effect of biscuits fortified with different doses of vitamin A on indices of vitamin A status, haemoglobin and physical growth levels of pre-school children in Chongqing.. *Public Health Nutrition*, 13(9), pp.1462-1471.

Zhang Y, Wu Q and Wang W ; van Velthoven M H; Chang S ; Han H ; Xing M ; Chen L ; Scherpbier R W;. (2016). Effectiveness of complementary food supplements and dietary counselling on anaemia and stunting in children aged 6-23 months in poor areas of Qinghai Province, China: a controlled interventional study.. *BMJ open*, 6(10), pp..

Zhang RongHua, Muyiduli X and Su DanTing ; Zhou Biao ; Fang YueQiang ; Jiang ShuYing ; Wang ShuoJia ; Huang LiChun ; Mo MinJia ; Li MinChao ; Shao BuLe ; Yu YunXian ;. (2017). Effect of low-dose vitamin D supplementation on serum 25(OH)D in school children and white-collar workers.. *Nutrients*, 9(5), pp.505.

Zhang Yefu, Ji Meimei and Zou Jiaojiao ; Yuan Tong ; Deng Jing ; Yang Lina ; Li Mingzhi ; Qin Hong ; Chen Jihua ; Lin Qian ;. (2018). Effect of a Conditional Cash Transfer Program on Nutritional Knowledge and Food Practices among Caregivers of 3-5-Year-Old Left-Behind Children in the Rural Hunan Province.. *International journal of environmental research and public health*, 15(3), pp..

Zhang Zhiying, Tran Nga T and Nguyen Tu S; Nguyen Lam T; Berde Yatin ; Tey Siew Ling; Low Yen Ling; Huynh Dieu T T;. (2018). Impact of maternal nutritional supplementation in conjunction with a breastfeeding support program during the last trimester to 12 weeks postpartum on breastfeeding practices and child development at 30 months old.. *PloS one*, 13(7), pp.e0200519.

Zhou Wen-jie, Xu Xiang-long and Li Ge ; Sharma Manoj ; Qie Ya-Ling ; Zhao Yong ;. (2016). Effectiveness of a school-based nutrition and food safety education program among primary and junior high school students in Chongqing, China. *Global Health Promotion*, 23, pp.37-49.

Zhu Rui, Xu Xianglong and Zhao Yong; Sharma Manoj; Shi Zumin; (2018). Decreasing the use of edible oils in China using WeChat and theories of behavior change: study protocol for a randomized controlled trial.. *Trials*, 19(1), pp.631.

Michael B Zimmermann, Kevin Connolly and Maksim Bozo; John Bridson; Fabian Rohner; Lindita Grimci; (2006). Iodine supplementation improves cognition in iodine-deficient schoolchildren in Albania: a randomized, controlled, double-blind study. , , pp..

Included systematic reviews

Bhutta Z A, Aamer Imdad and Ramakrishnan U ; Martorell R ;. (2012). Is it time to replace iron folate supplements in pregnancy with multiple micronutrients?. *Special Issue: Improving maternal, newborn and and child health outcomes through better designed policies and programs that enhance the nutrition of women.*, 26(s1), pp.27-35.

Bird F A, Pradhan A and Bhavani R V; Dangour A D;. (2019). Interventions in agriculture for nutrition outcomes: a systematic review focused on South Asia.. *Special Issue: Leveraging agriculture for nutrition in South Asia.*, 82, pp.39-49.

Blencowe H, Cousens S and Modell B ; Lawn J ;. (2010). Folic acid to reduce neonatal mortality from neural tube disorders.. *Special Issue: Development and use of the Lives Saved Tool (LiST): a model to estimate the impact of scaling up proven interventions on maternal and neonatal and child mortality.*, 39(Suppl. 1), pp.i110-i121.

Tablante Elizabeth Centeno, Pachón Helena and Guetterman Heather M; Finkelstein Julia L;. (2019). Fortification of wheat and maize flour with folic acid for population health outcomes. *Cochrane Database of Systematic Reviews*, , pp..

Cole Shawn, Bastian Gautan Gustav and Vyas Sangita ; Wendel Carina ; Stein Daniel ;. (2012). The Effectiveness Of Index-Based Micro-Insurance In Helping Smallholders Manage Weather-Related Risks.. *EPPI-Centre*, Not applicable(Not applicable), pp.Not applicable-.

Cordon A, Asturias G and De Vries T ; Rohloff P ;. (2019). Advancing child nutrition science in the scaling up nutrition era: A systematic scoping review of stunting research in Guatemala. *BMJ Paediatrics Open*, 3 (1) (no pagination), pp..

Das J K, Hoodbhoy Z and Salam R A; Bhutta A Z; Valenzuela-Rubio N G; Prinzo Z W; Bhutta Z A;. (2018). Lipid-based nutrient supplements for maternal, birth, and infant developmental outcomes.. *Cochrane Database of Systematic Reviews*, 8(8), pp.CD012610.

Eisenberg C M and Sanchez-Romero L M; Rivera-Dommarco J A; Holub C K; Arredondo E M; Elder J P; Barquera S. (2013). Interventions to increase physical activity and healthy eating among overweight and obese children in Mexico. *Interventions for preventing obesity in Latin American populations*, 55(Suplemento 3), pp.S441-S446.

Gaihre Santos, Kyle Janet and Semple Sean; Smith Jo; Subedi Madhu; Marais Debbi.; (2016). Type and extent of trans-disciplinary co-operation to improve food security, health and household environment in low and middle income countries: systematic review. *BMC Public Health*, 16(1093), pp.

Garcia-Casal M N, Peña-Rosas J P; Pachón H and De-Regil L M; Centeno T; Tablante E C; Flores-Urrutia M C.; (2016). Staple Crops Biofortified With Increased Micronutrient Content: Effects On Vitamin And Mineral Status, As Well As Health And Cognitive Function In The General Population (Protocol). *Cochrane Database of Systematic Reviews*, 2016(8), pp..

Garcia-Casal M N and Peña-Rosas J P; De-Regil L M; Gwiritz J A; Pasricha S R.; (2018). Fortification of maize flour with iron for controlling anaemia and iron deficiency in populations. *Cochrane Database of Systematic Reviews*, , pp..

Ton Giel, Desiere Sam and Vellema Wyste ; Weituschat Sophia ; D'Haese Marjika ;. (2017). The Effectiveness Of Contract Farming In Improving Smallholder Income And Food Security In Low- And Middle-Income Countries: A Mixed-Method Systematic Review. *3ie Systematic Review*, 38(Not applicable), pp. Not applicable-.

Goudet S M and Bogin B A; Madise N J; Griffiths P L;.. (2019). Nutritional interventions for preventing stunting in children (Birth to 59 months) living in urban slums in low-and middle-income countries (LMIC). *Cochrane Database of Systematic Reviews*, 2019(6), pp..

Hofmeyr G Justus, Manyame Sarah and Medley Nancy ; Williams Myfanwy J; . (2019). Calcium supplementation commencing before or early in pregnancy, for preventing hypertensive disorders of pregnancy.. *Cochraine Database of Systematic Reviews*, 9(9), pp..

Hossain M, Choudhury N and Adib Binte Abdullah K; Mondal P ; Jackson A A; Watson J ; Ahmed T ;. (2017). Evidence-based approaches to childhood stunting in low and middle income countries: a systematic review. , , pp..

Imdad Aamer, Yakoob Mohammad Yawar and Bhutta Zulfiqar A; (2011). Effect of breastfeeding promotion interventions on breastfeeding rates, with special focus on developing countries. *BMC Public Health*, 11, pp..

Ip Patrick, Ho Frederick Ka Wing and Rao Nirmala ; Sun Jin ; Young Mary Eming; Chow Chun Bong; Tso Winnie ; Hon Kam Lun; (2017). Impact of nutritional supplements on cognitive development of children in developing countries: a meta-analysis. *Scientific Reports*, 7(10611), pp..

Keats E C, Haider B A; Tam E and Bhutta Z A;. (2019). Multiple-micronutrient supplementation for women during pregnancy.. *Cochrane Database of Systematic Reviews*, , pp..

Korth Marcel, Stewart Ruth and Langer Laurenz ; Madinga Nolizwe ; da Silva Natalie R; Zaranyika Hazel ; van Rooyen Carina ; de Wet Thea ;. (2014). What are the impacts of urban agriculture programs on food security in low and middle-income countries: A systematic review. *Environmental Evidence*, 3(21), pp..

Lamstein S, Stillman T and Koniz-Booher P ; Aakesson A ; Collaiezzi B ; Williams T ; Beall K ; Anson M ;. (2014). *Evidence of Effective Approaches to Social and Behavior Change Communication for Preventing and Reducing Stunting and Anemia*. : USAID, pp.116. Available at: function URL() { [native code] }.

Lassi Z S, Padhani Z A; Rabbani Amna and Rind Fahad ; Salam R A; Das J K; Bhutta Z A;. (2020). Impact of dietary interventions during pregnancy on maternal, neonatal, and child outcomes in low- and middle-income countries.. *Nutrients*, 12(2), pp..

Lee S H, Nurmatov U B; Nwaru B I; Mukherjee M and Grant L ; Pagliari C ;. (2016). Effectiveness of mHealth interventions for maternal, newborn and child health in low- and middle-income countries: systematic review and meta-analysis.. *Journal of Global Health*, 6(1), pp.010401.
Li ZhiHui, Li Xinyi and Sudfeld Christopher R; Liu Yuning ; Tang Kun ; Huang Yangmu ; Fawzi Wafaie ;. (2019). The effect of the yingyangbao complementary food supplement on the nutritional status of infants and children: a systematic review and meta-analysis. *Nutrients*, 11(10), pp..

Mayén Ana-Lucia, de Mestral Carlos and Zamora Gerardo ; Paccaud Fred ; Marques-Vidal Pedro ; Bovet Pascal ; Stringhini Silvia ;. (2016). Interventions promoting healthy eating as a tool for reducing social inequalities in diet in low- and middle-income countries: a systematic review. *International Journal for Equity in Health*, 15, pp.1-10.

McCaughey M E, van den Broek N and Dou L; Othman M.; (2015). Vitamin A supplementation during pregnancy for maternal and newborn outcomes. *Cochrane Database of Systematic Reviews*, 10(11), pp..

Ota E, Mori R and Middleton P ; Tobe-Gai R ; Mahomed K ; Miyazaki C ; Bhutta Z A.; (2015). Zinc supplementation for improving pregnancy and infant outcome. : .

Oya Carlos, Schaefer Florian and Skalidou Dafni ; McCosker Catherine ; Langer Laurenz ;. (2017). Effects Of Certification Schemes For Agricultural Production On Socio-Economic Outcomes In Low- And Middle-Income Countries (Review). *3ie Systematic Review*, 34, pp..

Pena-Rosas J P, Prasanna Mithra and Bhaskaran Unnikrishnan ; Nithin Kumar ; De-Regil L M; Nair N S; Garcia-Casal M N; Solon J A.; (2019). Fortification of rice with vitamins and minerals for addressing micronutrient malnutrition.. *Cochrane Database of Systematic Reviews*, (10), pp.CD009902.

Pérez-Expósito A B and Klein B P.;. (2009). Impact of fortified blended food aid products on nutritional status of infants and young children in developing countries. , , pp..

Roth D E, Leung M and Mesfin E; Qamar H; Watterworth J; Papp E; (2017). Vitamin D supplementation during pregnancy: state of the evidence from a systematic review of randomised trials.

Rumbold A, Ota E and Nagata C; Shahrook S; Crowther C A; (2015). Vitamin C supplementation in pregnancy.

Sguassero Y, de Onis M and Bonotti A M; Carroli G ;. (2012). Community-based supplementary feeding for promoting the growth of children under five years of age in low and middle income countries. *Cochrane Database of Systematic Reviews*, (6), pp.84.

Shah D, Sachdev H S and Gera T ; De-Regil L M; Peña-Rosas J P;. (2016). Fortification of staple foods with zinc for improving zinc status and other health outcomes in the general population. *Cochrane Database of Systematic Reviews*, (6), pp..

Shapiro M J, Downs S M; Swartz H J; Parker M and Quelhas D ; Kreis K ; Kraemer K ; West K P. Jr; Fanzo J ;. (2019). A systematic review investigating the relation between animal-source food consumption and stunting in children aged 6-60 months in low and middle-income countries.. *Advances in Nutrition*, 10(5), pp.827-847.

Smith E R, Shankar A H; Wu L S; Aboud S and Adu-Afarwuah S ; Ali H ; Agustina R ; Arifeen S ; Ashorn P ; Bhutta Z A; Christian P ; Devakumar D ; Dewey K G; Friis H ; Gomo E ; Gupta P ; Kæstel P ; Kolsteren P ; Lanou H ; Maleta K ; Mamadoueltaibou A ; Msamanga G ; Osrin D ; Persson L Å; Ramakrishnan U ; Rivera J A; Rizvi A ; Sachdev H

Stewart Ruth, Langer Laurenz and Da Silva; Natalie R; Muchiri Evans; Zaranyika Hazel; Erasmus Yvonne; Randall Nicola; Rafferty Shannon; Korth Marcel; Madinga Nolizwe; de Wet; Thea ;.. (2015). The Effects Of Training, Innovation And New Technology On African Smallholder Farmers' Economic Outcomes And Food Security: A Systematic Review. *3ie Systematic Review*, 19(Not applicable), pp.Not applicable-.

Sunguya B F, Poudel K C; Mlunde L B; Shakya P and Urassa D P; Jimba M ; Yasuoka J ;.. (2013). Effectiveness of nutrition training of health workers toward improving caregivers' feeding practices for children aged six months to two years: a systematic review. , , pp..

Waddington H, Snilstveit B and Hombrados J G; Vojtkova M ; Phillips D ; Davies P ; White H ;. (2014). *Farmer field schools for improving farming practices and farmer outcomes in low- and middle-income countries: a systematic review.*

Linked studies

Maya Adam, Mark Tomlinson and Ingrid Le Roux; Amnesty E LeFevre; Shannon A McMahon; Jamie Johnston ; Angela Kirton ; Nokwanele Mbewu ; Stacy-Leigh Strydom ; Charles Prober ; Till Bärnighausen; . (2019). The Philani MOVIE study: a cluster-randomized controlled trial of a mobile video entertainment-education intervention to promote exclusive breastfeeding in South Africa. https://clinicaltrials.gov/show/NCT03688217, , pp..

Adams K P, Ayifah E and Phiri T E; Mridha M K; Adu-Afarwuah S ; Arimond M ; Arnold C D; Cummins J ; Hussain S ; Kumwenda C ; Matias S L; Ashorn U ; Larney A ; Maleta K M; Vosti S A; Dewey K G; (2017). Maternal and child supplementation with lipid-based nutrient supplements, but not child supplementation alone, decreases self-reported household food insecurity in some settings. *Journal of Nutrition*, 147(12), pp.2309-2318.

Adu-Afarwuah S, Larney A and Okronipa H ; Ashorn P ; Peerson J M; Arimond M ; Ashorn U ; Zeilani M ; Vosti S ; Dewey K G; (2016). Small-quantity, lipid-based nutrient supplements provided to women during pregnancy and 6 mo postpartum and to their infants from 6 mo of age increase the mean attained length of 18-mo-old children in semi-urban Ghana: a randomized controlled trial. *American Journal of Clinical Nutrition*, 104(3), pp.797-808.

Adu-Afarwuah S, Larney A and Okronipa H ; Ashorn P ; Ashorn U ; Zeilani M ; Arimond M ; Vosti S A; Dewey K G; (2017). Maternal supplementation with small-quantity lipid-based nutrient supplements compared with multiple micronutrients, but not with iron and folic acid, reduces the prevalence of low gestational weight gain in semi-urban Ghana: a randomized controlled trial. *Journal of Nutrition*, 147(4), pp.697-705.

Adu-Afarwuah S, Young R T and Larney A; Okronipa H; Ashorn P; Ashorn U; Oaks B M; Arimond M; Dewey K G.; (2019). Maternal and infant supplementation with small-quantity lipid-based nutrient supplements increases infants’ iron status at 18 months of age in a semiurban setting in Ghana: a secondary outcome analysis of the iLiNS-DYAD randomized controlled trial. *Journal of Nutrition, 149*(1), pp.149-158.

Adu-Afarwuah S, Young R R and Larney A; Okronipa H; Ashorn P; Ashorn U; Oaks B M; Dewey K G.; (2020). Supplementation with small-quantity lipid-based nutrient supplements does not increase child morbidity in a semiurban setting in Ghana: a secondary outcome noninferiority analysis of the international lipid-based nutrient supplements (iLiNS)-DYAD randomized controlled trial. *Journal of Nutrition, 150*(2), pp.382-393.

Ahmed A U, Quisumbing M A.R; Hoddinott J and Nasreen M ; Bryan E ;. (2007). Relative Efficacy of Food and Cash Transfers in Improving Food Security and Livelihoods of the Ultra-Poor in Bangladesh. , , pp..

Argimond M, Abbedou S and Kumwenda C ; Okronipa H ; Hemsworth J ; Jimenez E Y; Ocansey E ; Larney A ; Ashorn U ; Adu-Afarwuah S ; Vosti S A; Hess S Y; Dewey K G; (2017). Impact of small quantity lipid-based nutrient supplements on infant and young child feeding practices at 18 months of age: results from four randomized controlled trials in Africa.. *Maternal and Child Nutrition*, 13(3), pp.e12377.

Benjamin F Arnold1, Clair Null2 and 3 ; Stephen P Luby4; 5 ; Leanne Unicomb4 ; Christine P Stewart6; Kathryn G Dewey6; Tahmeed Ahmed7 ; 8 ; Sania Ashraf4 ; Garret Christensen3 ; 9 ; Thomas Clasen2 ; Holly N Dentz2; 3 ; Lia C H Fernald1; Rashidul Haque4 ; 10 ; Alan E Hubbard1; Patricia Kariger1 ; Eli Leontsini11 ; Audrie Lin1 ; Sammy M Njenga12; Amy J Pickering13; Pavan K Ram14; Fahmida Tofail7 ; Peter J Winch11; John M Colford Jr1;. (2013). Cluster-randomised controlled trials of individual and combined water, sanitation, hygiene and nutritional interventions in rural Bangladesh and Kenya: the WASH Benefits study design and rationale . *BMJ Open*, 3(8), pp..

Ashorn P, Alho L and Ashorn U ; Cheung YinBun ; Dewey K G; Gondwe A ; Harjunmaa U ; Larney A ; Phiri N ; Phiri T E; Vosti S A; Zeilani M ; Maleta K .; (2015). Supplementation of maternal diets during pregnancy and for 6 months postpartum and infant diets thereafter with small-quantity lipid-based nutrient supplements does not promote child growth by 18 months of age in rural Malawi: a randomized controlled trial.. *Journal of Nutrition*, 145(6), pp.1345-1353.

Per Ashorn, Basho Poelman and Kathryn G Dewey; Kenneth Maleta ; Nigel Klein ; Stephen Rogerson ; Steven R Meshnick; (2017). *The Impact of Dietary Supplementation with Lipid-Based Nutrient Supplements on Maternal Health and Pregnancy Outcomes in Rural Malawi.* , pp.. function URL() { [native code] }

Bernardo Greyce Luci, Jomori Manuela Mika; Fernandes Ana Carolina; Colussi Claudia Flemming; Condrasky Margaret D; da Costa Proenca and Rossana Pacheco. (2018). Positive impact of a cooking skills intervention among Brazilian university students: Six months follow-up of a randomized controlled trial. Appetite, 130, pp.247-255.

Nita Bh, ari and Sarmila Mazumder; Rajiv Bahl; Jose Martines; Robert E Black; Maharaj K. Bhan; 2; other members of the Infant Feeding Study Group3. (2004). educational intervention to promote appropriate complementary feeding practices and physical growth in infants and young children in rural Haryana, India. Journal of nutrition, 134, pp.2342-2348.
Bhandari N, Black R E and Bhan M K; Martines J ; Mazumder S ; Bahl R ;. (2004). An educational intervention to promote appropriate complementary feeding practices and physical growth in infants and young children in rural Haryana, India. *Journal of nutrition*, 134, pp.2342-2348.

Bhandari Nita, Mohan Sanjana Brahmwawar and Bose Anuradha ; Iyengar Sharad D; Taneja Sunita ; Mazumder Sarmila ; Pricilla Ruby Angeline; Iyengar Kirti ; Sachdev Harshpal Singh; Mohan Venkata Raghava; Suhalka Virendra ; Yoshida Sachiyo ; Martines Jose ; Bahl Rajiv ;. (2016). Efficacy of three feeding regimens for home-based management of children with uncomplicated severe acute malnutrition: a randomised trial in India.. *BMJ global health*, 1(4), pp.e000144.

Borg B, Mihrshahi S and Griffin M; Sok D; Chhoun C; Laillou A; Berger J; Wieringa F T; (2018). Randomised controlled trial to test the effectiveness of a locally-produced ready-to-use supplementary food (RUSF) in preventing growth faltering and improving micronutrient status for children under two years in Cambodia: a study protocol. Nutrition journal, 17, pp.39-39.

Borg Bindi, Mihrshahi Seema and Griffin Mark; Sok Daream; Chhoun Chamnan; Laillou Arnaud; Wieringa Frank T; (2019). Acceptability of locally-produced Ready-to-Use Supplementary Food (RUSF) for children under two years in Cambodia: A cluster randomised trial.. Maternal & child nutrition, 15(3), pp.e12780.

Buchsbaum A, Shoham J and Harris J; McGrath M; (2016). Impact of an integrated agriculture and nutrition and health behaviour change communication programme for women in Burkina Faso.. Special focus on nutrition-sensitive programming., (51), pp.42-43.

Cavatassi Ramina, González-Flores Mario and Winters Paul ; Andrade-Piedra Jorge ; Espinosa Patricio ; Thiele Graham ;. (2011). Linking smallholders to the new agricultural economy: The case of the plataformas de concertación in Ecuador. pp.375.

Chen Ke, Li TingYu and Chen Li ; Liu YouXue ; Qu Ping ; Zhang YiGuan ;. (2007). Multiple micronutrient-fortified seasoning powders in preschool children in Chongqing suburb.. *Sight and Life Magazine*, (3/2007), pp.28-31.

Li Y, Hu X and Zhang Q ; Liu A ; Fang H ; Hao L ; Duan Y ; Xu H ; Shang X ; Ma J ; Xu G ; Du L ; Li Y ; Guo H ; Li T ; Ma G . (2009). The nutrition-based comprehensive intervention study on childhood obesity in China. *BMC Public Health*, 10(229), pp.7.

Chirwa Themba G. (2010). *Program evaluation of agricultural input subsidies in Malawi using treatment effects: Methods and practicability based on propensity scores.* : University Library of Munich, Germany.

Christian P, Khatry S K and Katz J ; Pradhan E K; LeClerq S C; Shrestha S R; Adhikari R K; Sommer A ; Keith P W:. (2003). Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: double blind randomised community trial. , pp..

Cliffer I R, Nikiema L and Langlois B K; Zeba A N; Shen Y ; Lanou H B; Suri D J; Garanet F ; Chui K ; Vosti S ; Walton S ; Rosenberg I ; Webb P ; Rogers B L;. (2020). Cost-effectiveness of 4 specialized nutritious foods in the prevention of stunting and wasting in children aged 6-23 months in Burkina Faso: A geographically randomized trial. *Current Developments in Nutrition*, 4 (2) (no pagination), pp..

M Arantxa Colchero and Barry M Popkin; Juan A Rivera; Shu Wen Ng;. (2016). Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study. *BMJ*, 352, pp..

Conan Anne, Goutard Flavie Luce and Holl Davun ; Ra Sok ; Ponsich Aurelia ; Tarantola Arnaud ; Sorn San ; Vong Sirenda ;. (2013). Cluster randomised trial of the impact of biosecurity measures on poultry health in backyard flocks. *Veterinary journal (London and England : 1997)*, 198(3), pp.649-55.
Oliver Cumming, Benjamin F Arnold and Radu Ban; Thomas Clasen; Joanna Esteves Mills; Matthew C Freeman; Bruce Gordon; Raymond Guiteras; Guy Howard; Paul R Hunter; Richard B Johnston; Amy J Pickering; rew J Prendergast; Annette Prüss-Ustün; Jan Willem Rosenboom; Dean Spears; Shelly Sundberg; Jennyfer Wolf; Clair Null; Stephen P Luby; Jean H Humphrey; John M Colford Jr.; (2019). The implications of three major new trials for the effect of water, sanitation and hygiene on childhood diarrhea and stunting: a consensus statement. *BMC Medicine*, 17(173), pp..

Cunha D, Souza B and Pereira R; Sichieri R; (2012). Preventing excessive weight gain by encouraging healthy eating habits among adolescents in Brazil: a randomised community trial. *FASEB journal*, 26, pp..

Daidone S, Pace N and Prifti E; (2020). *Combining cash transfers with rural development interventions: an impact evaluation of Lesotho’s Child Grants Programme (CGP) and Sustainable Poverty Reduction through Income*. : , pp.. function URL() {
[native code] }

Dangour A D, Albala C and Aedo C; Elbourne D; Grundy E; Walker D; Uauy R; (2007). A factorial-design cluster randomised controlled trial investigating the cost-effectiveness of a nutrition supplement and an exercise programme on pneumonia incidence, walking capacity and body mass index in older people living in Santiago, Chile: the CENEX study protocol. *Nutrition journal*, 6, pp.14.

Das Jai K, Salam Rehana A; Hadi Yousaf Bashir; Sadiq Sheikh and Sana ; Bhutta Afsah Z; Weise Prinzo ; Zita ; Bhutta Zulfiqar A; (2017). Preventive lipid-based nutrient supplements given with complementary foods to infants and young children 6 to 23 months of age for health, nutrition, and developmental outcomes.. *The Cochrane database of systematic reviews*, 5, pp.CD012611.

de Janvry A, Sadoulet E and Emerick K ; Dar M ;. (2015). The Impact of Seed Fairs on the Diffusion of New Crop Varieties in India. , , pp..

De Villiers , A and Steyn N P; Draper C E; Hill J ; Dalais L ; Fourie J ; Lombard C ; Barkhuizen G ; Lambert E V;. (2015). Implementation of the HealthKick intervention in primary schools in low-income settings in the Western Cape Province, South Africa: A process evaluation. BMC Public Health, 15, pp..

Luz Maria De-Regil, Cristina Palacios and Lia K Lombardo; Juan Pablo Peña-Rosa;;. (2016). Vitamin D supplementation for women during pregnancy. Cochrane Database of Systematic Reviews, , pp..

del Ninno , Carlo and Dorosh Paul A;. (2002). In-kind transfers and household food consumption. : International Food Policy Research Institute (IFPRI).

Delimont N M, Chanadang S and Joseph M V; Rockler B E; Guo Q ; Regier G K; Mulford M R; Kay ; a R ; Range M ; Mziray Z ; Jonas A ;. (2017). The MFFAPP Tanzania efficacy study protocol: newly formulated, extruded, fortified blended foods for food aid. Current developments in nutrition, 1, pp..

Devakumar D, Fall C H and Sachdev H S; Margetts B M; Osmond C ; Wells J C K; Costello A ; Osrin D ;. (2016). Maternal antenatal multiple micronutrient supplementation for long-term health benefits in children: a systematic review and meta-analysis. , , pp..

Dewey K G and Mridha M K; Matias S L; Cummins J R; Peerson J M; Arnold C D; Young R T; Vosti S A;.(2016). Effectiveness of a Lipid-Based Nutrient Supplement (LNS) Intervention on Pregnancy and Birth Outcomes in Bangladesh. , , pp..

Kathryn G Dewey and Malay K Mridha; Susana L Matias; Charles D Arnold; Rebecca T Young;.(2017). Long-Term Effects of the Rang-Din Nutrition Study Interventions on Maternal and Child Outcomes. , , pp..

Kathryn G Dewey, Malay K Mridha; Susana L Matias; Joseph R Cummins; Charles D Arnold; Rebecca T Young; Zeina Maalouf-Manasseh and Stephen A Vosti;.(2018). Effectiveness of Home Fortification with Lipid-Based Nutrient Supplements (LNS) or Micronutrient Powder on Child Growth, Development, Micronutrient Status, and Health Expenditures in Bangladesh:. , , pp.. function URL() { [native code] }.

Dhlamini T S, Kuupiel D and Mashamba-Thompson T P;.(2019). Evidence on point-of-care diagnostics for assessment of nutritional biochemical markers as an integral part of maternal services in low- and middle-income countries: systematic scoping review protocol.. Systematic Reviews, 8(6), pp..

Diogenes M E. L, Bezerra F F; Rezende E P; Taveira M F; Pinhal I and Donangelo C M;.(2013). Effect of calcium plus vitamin D supplementation during pregnancy in Brazilian adolescent mothers: a randomized, placebo-controlled trial.. American Journal of Clinical Nutrition, 98(1), pp.82-91.

Doocy S, Cohen S and Emerson J; Menakuntuala J; Rocha J S; Klemm R; Stron J; Brye L; Funna S; Nzanzu J P; Musa E; Caulfield L; Colantouni E; Jenga Jamaa; I I Study Team;.(2017). Food security and nutrition outcomes of farmer field schools in eastern democratic republic of the Congo. Global Health Science and Practice, 5, pp.630-643.

Doocy S, Emerson J and Colantouni E; Strong J; Mansen K A; Caulfield L E; Klemm R; Brye L; Funna S; Nzanzu J P; Musa E; Rocha J S; Menakuntuala J; The Jenga Jamaa; I I Study Team;.(2018). Improving household food security in eastern Democratic Republic of the Congo: a comparative analysis of four interventions. Food Security, 10, pp.649-660.
Doocy Shannon, Busingye Martin and Lyles Emily; Colantouni Elizabeth; Aidam Bridget; Ebulu George; Savage Kevin. (2020). Cash and voucher assistance and children's nutrition status in Somalia. *Maternal & child nutrition*, 16, pp.e12966.

Engebretsen I M, Jackson D and Fadnes L T; Nankabirwa V; Diallo A H; Doherty T; Lombard C; Swanvelder S; Nankunda J; Ramokolo V; Sanders D; Wamani H; Meda N; Tumwine J K; Ekstrom E C; Perre P van de; Kankasa C; Sommerfelt H; Tylleskar T. (2014). Growth effects of exclusive breastfeeding promotion by peer counsellors in sub-Saharan Africa: the cluster-randomised PROMISE EBF trial. *BMC Public Health*, 14(633), pp..

Nct. (2013). Different Strategies for Preventing Severe Acute Malnutrition in Niger. [https://clinicaltrials.gov/show/NCT01828814], 16, pp..

Fadnes L T, Nankabirwa V and Engebretsen I M; Sommerfelt H; Birungi N; Lombard C; Swanevelder S; Van Den Broeck; J; Tylleskär T; Tumwine J K.; (2016). Effects of an exclusive breastfeeding intervention for six months on growth patterns of 4-5 year old children in Uganda: The cluster-randomised PROMISE EBF trial. *BMC Public Health*, 16, pp..

Ana C Fernández-Gaxiola and Luz Maria De-Regil; (2011). Intermittent iron supplementation for reducing anaemia and its associated impairments in menstruating women. *Cochrane Database of Systematic Reviews*, , pp..

Frith A L and Naved R T; Persson L A; Rasmussen K M; Frongillo E A.; (2012). Early participation in a prenatal food supplementation program ameliorates the negative association of food insecurity with quality of maternal-infant interaction.. *Journal of Nutrition*, 142(6), pp.1095-1101.

Frith A, Ziaei S and Frongillo E ; Khan A ; Ekstrom E C; Naved R ;. (2017). Breastfeeding counseling improves maternal-infant feeding interaction in those exposed to controlling behavior or emotional violence: mNIMat study in Bangladesh. *FASEB Journal*, 31, pp..

Gelli Aulo, Masset Edoardo and Folson Gloria ; Kusi Anthoni ; Arhinful Daniel K; Asante Felix ; Ayi Irene ; Bosompem Kwabena M; Watkins Kristie ; Abdul-Rahman Lutuf ; Agble Rosanna ; Ananse-Baden Getrude ; Mumuni Daniel ; Aurino Elisabetta ; Fernandes Meena ; Drake Lesley ;. (2016). Evaluation of alternative school feeding models on nutrition, education, agriculture and other social outcomes in Ghana: rationale, randomised design and baseline data. *Trials*, 17, pp.1-19.

Gelli A, Margolies A and Santacroce M ; Sproule K ; Theis S ; Roschnik N ; Twalibu A ; Chidalengwa G ; Cooper A ; Moorhead T ; et al ;. (2017). Improving child nutrition and development through community-based childcare centres in Malawi - The NEEP-IE study: study protocol for a randomised controlled trial. *Trials*, 18, pp.284.

Ghattas H, Jamaluddine Z and Choufani J ; Masterson A R; Sahyoun N R;. (2019). Improvements in economic, social, and food security outcomes of Palestinian refugee women and diet diversity of Palestinian schoolchildren in Lebanon: the Healthy Kitchens, Healthy Children intervention.. *Special Issue: Research in the Occupied Palestinian Territory 2018.*, 393(Suppl. 1), pp.S25.

Gladstone M J, Chandna J and Kandawasvika G; Ntozini R; Majo F D; Tavengwa N V; Mbuya M N. N; Mangwadu G T; Chigumira A; Chasokela C M; Moulton L H; Stoltzfus R J; Humphrey J H; Prendergast A J.; (2019). Independent and combined effects of improved water, sanitation, and hygiene (WASH) and improved complementary feeding on early neurodevelopment among children born to HIV-negative mothers in rural Zimbabwe: substudy of a cluster-randomized trial. *PLoS Medicine*, 16(3), pp.e1002766.

Grellety E, Shepherd S and Roederer T; Manzo M L; Doyon S; Ategbo E A; Grais R F.; (2012). Effect of mass supplementation with ready-to-use supplementary food during an anticipated nutritional emergency. *PLoS ONE*, 7(9), pp.e44549.

Grillenberger Monika, Neumann Charlotte G and Murphy Suzanne P; Bwibo Nimrod O; van't Veer; Pieter; Hautvast Joseph G. A. J; West Clive E.; (2003). Food supplements have a positive impact on weight gain and the addition of animal source foods increases lean body mass of Kenyan schoolchildren. *Journal of Nutrition*, 133, pp.3957S-3964S.

235
Haghparast-Bidgoli Hassan, Skordis Jolene and Harris-Fry Helen; Krishnan Sneha; O'Hearn Meghan; Kumar Abhinav; Pradhan Ronali; Mishra Naba Kishore; Upadhyay Avinash; Pradhan Shibananth; Ojha Amit Kumar; Cunningham Sarah; Rath Shibanand; Palmer Tom; Koniz-Booher Peggy; Kadiyala Sunetha; (2019). Protocol for the cost-consequence and equity impact analyses of a cluster randomised controlled trial comparing three variants of a nutrition-sensitive agricultural extension intervention to improve maternal and child dietary diversity and nutritional status in rural Odisha, India (UPAVAN trial). *Trials*, 20, pp.N.PAG-N.PAG.

Haider B A and Bhutta Z A.; (2012). Multiple-micronutrient supplementation for women during pregnancy. , , pp..

Haider B A and Bhutta Z A.; (2015). Multiple-micronutrient supplementation for women during pregnancy. , , pp..

Haider B A and Bhutta Z A.; (2017). Multiple-micronutrient supplementation for women during pregnancy. , , pp..

Haider B A and Bhutta Z A.; (2019). Multiple-micronutrient supplementation for women during pregnancy. , , pp..

Hambidge K M, Krebs N F; Westcott J E; Garces A and Goudar S S; Kodkany B S; Pasha O; Tshefu A; Bose C L; Figueroa L; Goldenberg R L; Derman R J; Friedman J E; Frank D N; McClure E M; Stolka K; Das A; Koso-Thomas M; Sundberg S.; (2014). Preconception maternal nutrition: a multi-site randomized controlled trial.. *BMC pregnancy and childbirth*, 14, pp.111.

Hanieh S, Ha T T and Simpson J A; Casey G J; Khuong N C; Thoang D D; Thuy T T; Pasricha S R; Tran T D; Tran Tuan; Dwyer T; Fisher J; Biggs B A.; (2013). The effect of intermittent antenatal iron supplementation on maternal and infant outcomes in rural Viet Nam: a cluster randomised trial.. *PLoS Medicine*, 10(6), pp.e1001470.

He F J, Wu Y and Ma J; Feng X; Wang H; Zhang J; Lin C P; Yuan J; Ma Y; Yang Y; Yan L L; Jan S; Nowson C; Macgregor G A; (2013). A School-based Education Programme to Reduce salt intake in children and their families (School-EduSalt): Protocol of a cluster randomised controlled trial. BMJ Open, 3, pp..

Heckert J, Leroy J L and Olney D K; Richter S ; Iruhiriye E ; Ruel M T; (2020). The cost of improving nutritional outcomes through food-assisted maternal and child health and nutrition programmes in Burundi and Guatemala. Maternal and Child Nutrition, 16(1), pp.e12863.

Hemsworth J, Kumwenda C and Arimond M ; Maleta K ; Phuka J ; Rehman A M; Vosti S A; Ashorn U ; Filteau S ; Dewey K G; Ashorn P ; Ferguson E L.; (2016). Lipid-based nutrient supplements increase energy and macronutrient intakes from complementary food among Malawian infants. Journal of Nutrition, 146(2), pp.326-334.

Hess S Y, Abbeddou S and Jimenez E Y; Somé J W; Vosti S A; Ouédraogo Z P; Guissou R M; Ouédraogo J B; Brown K H; (2015). Small-quantity lipid-based nutrient supplements, regardless of their zinc content, increase growth and reduce the prevalence of stunting and wasting in young burkinabe children: a cluster-randomized trial. , , pp..

Hidrobo Melissa, Hoddinott John F and Peterman Amber ; Margolies Amy ; Moreira Vanessa ;. (2012). Cash, food, or vouchers?: Evidence from a randomized experiment in northern Ecuador. : International Food Policy Research Institute (IFPRI).

. (2014). The effect of cash, vouchers and food transfers on intimate partner violence / Evidence from a randomized experiment in Northern Ecuador., , pp..

Hmone Myat Pan, Li Mu and Alam Ashraful ; Dibley Michael J.; (2017). Mobile Phone Short Messages to Improve Exclusive Breastfeeding and Reduce Adverse Infant Feeding Practices: Protocol for a Randomized Controlled Trial in Yangon, Myanmar. JMIR research protocols, 6(6), pp.e126.

. (2013). Evidence from a randomized intervention in Niger / The impact of cash and food transfers. , , pp..

Hoddinot J, Ahmed A and Karachiwalla N I; Roy S.; (2017). Nutrition behaviour change communication causes sustained effects on IYCN knowledge in two cluster-randomised trials in Bangladesh. , , pp..

Hofmeyr GJ and Manyame S. (2017). Calcium supplementation commencing before or early in pregnancy, or food fortification with calcium, for preventing hypertensive disorders of pregnancy (Review). *Cochrane Database of Systematic Reviews*, , pp..

Jacob Humber, Stephen A Vosti and Joseph Cummins; Malay Mridha; Susana L Matias; Kathryn Dewey.; (2017). The Rang-Din Nutrition Study in Rural Bangladesh: The Costs and Cost-Effectiveness of Programmatic Interventions to Improve Linear Growth at Birth and 18 Months, and the Costs of These Interventions at 24 Months. , , pp..

Huybregts L, Becquey E and Zongrone A ; Port A le; Khassanova R ; Coulibaly L ; Leroy J L; Rawat R; Ruel M T.; (2017). The impact of integrated prevention and treatment on child malnutrition and health: the PROMIS project, a randomized control trial in Burkina Faso and Mali. *BMC Public Health*, 17(237), pp..

Iannotti L L, Lutter C K; Waters W F; Riofrio C A. G; Malo C and Reinhart G; Palacios A; Karp C; Chapnick M; Cox K; Aguirre S; Narvaez L; Lopez F; Rohini Sidhu; Kell P; Jiang XunTian; Fujiwara H; Ory D S; Young R; Stewart C P.; (2017). Eggs early in complementary feeding increase choline pathway biomarkers and DHA: a randomized controlled trial in Ecuador. *American Journal of Clinical Nutrition*, 106(6), pp.1482-1489.

Imdad A, Herzer K and Mayo-Wilson E; Yakoob MY; Bhutta ZA.; (2010). Vitamin A supplementation for preventing morbidity and mortality in children six months to five years of age (Protocol). , , pp..

Jannat Kaniz, Luby Stephen P and Unicomb Leanne; Rahman Mahbubur; Winch Peter J; Parvez Sarker M; Das Kishor K; Leontsini Elli; Ram Pavani K; Stewart Christine P.; (2019). Complementary feeding practices among rural Bangladeshi mothers: Results from WASH Benefits study. *Maternal & child nutrition*, 15(1), pp.e12654.

Jelle Mohamed, Grijalva-Eternod Carlos S and Haghparsat-Bidgoli Hassan; King Sarah; Cox Cassy L; Skordis-Worrall Jolene; Morrison Joanna; Colbourn Timothy; Fottrell Edward; Seal Andrew J.; (2017). The REFANI-S study protocol: a non-randomised cluster controlled trial to assess the role of an unconditional cash transfer, a non-food item kit, and free piped water in reducing the risk of acute malnutrition among children aged 6-59 months living in camps for internally displaced persons in the Afgooye corridor, Somalia. *BMC public health*, 17(1), pp.632.

Jimenez-Cruz A and Bacardi-Gascon M. (2011). *School based program to promote lifestyle changes to prevent overweight in elementary school children.*

Jorgensen J M, Arnold C and Ashorn P ; Ashorn U ; Cheung YinBun ; Davis J C. C; Fan YueMei ; Goonatileke E ; Kortekangas E ; Kumwenda C ; Lebrilla C B; Maleta K ; Totten S M; Wu L D; Dewey K G;. (2017). Lipid-based nutrient supplements during pregnancy and lactation did not affect human milk oligosaccharides and bioactive proteins in a randomized trial. *Journal of Nutrition, 147(10), pp.1867-1874.*

Karamba RW. (2013). Input subsidies and their effect on cropland allocation, agricultural productivity, and child nutrition: Evidence from Malawi. , , pp..

Khan A I, Kabir I and Hawkesworth S ; Ekstrom E ; Arifeen S ; Frongillo E A; Persson L A;.. (2015). Early invitation to food and/or multiple micronutrient supplementation in pregnancy does not affect body composition in offspring at 54 months: follow-up of the MINIMat randomised trial, Bangladesh.. *Maternal and Child Nutrition*, 11(3), pp.385-397.

Kimani-Murage Elizabeth W, Kyobutungi Catherine and Ezeh Alex C; Wekesah Frederick ; Wanjoji Milka ; Muriuki Peterrock ; Musoke Rachel N; Norris Shane A; Griffiths Paula ; Madise Nyovani J;.. (2013). Effectiveness of personalised, home-based nutritional counselling on infant feeding practices, morbidity and nutritional outcomes among infants in Nairobi slums: study protocol for a cluster randomised controlled trial.. *Trials*, 14, pp.445.

Kimani-Murage E W, Kimiywe J and Kabue M ; Wekesah F ; Matiri E ; Muhia N ; Wanjoji M ; Muriuki P ; Samburu B ; Kanyuira J N; Young S L; Griffiths P L; Madise N J; McGarvey S T;.. (2015). Feasibility and effectiveness of the baby friendly community initiative in rural Kenya: Study protocol for a randomized controlled trial. *Trials*, 16, pp..

Klevor M K, Adu-Afarwuah S and Ashorn P ; Arimond M ; Dewey K G; Larney A ; Maleta K ; Phiri N ; Pyykko J ; Zeilani M ; Ashorn U ; (2016). A mixed method study exploring adherence to and acceptability of small quantity lipid-based nutrient supplements (SQ-LNS) among pregnant and lactating women in Ghana and Malawi. , , pp..

Knox Jerry, Daccache Andre and Hess Tim ; (2013). What is the impact of infrastructural investments in roads, electricity and irrigation on agricultural productivity? Final review. , , pp..

Kramer M S, Chalmers B and Hodnett E D; Sevkovskaya Z ; Dzikovich I ; Shapiro S ; Collet J P; Vanilovich I ; Mezen I ; Ducruet T ; Shishko G ; Zubovich V ; Mknuik D ; Gluchanina E ; Dombrovsky V ; Ustinovitch A ; Ko T ; Bogdanovich N ; Ovchinikova L ; Helsing E ; (2000). Promotion of breastfeeding intervention trial (PROBIT): a cluster-randomized trial in the Republic of Belarus. Design, follow-up, and data validation.. *Advances in experimental medicine and biology*, 478, pp.327-45.

Kramer M S, Matush L and Vanilovich I; Platt R W; Bogdanovich N; Sevkovskaya Z; Dzikovich I; Shishko G; Collet J P; Martin R M; Smith G D; Gillman M W; Chalmers B; Hodnett E; Shapiro S; Kramer Michael S; Matush Lidia; Vanilovich Irina; Platt Robert W; Bogdanovich Natalia.; (2009). A randomized breast-feeding promotion intervention did not reduce child obesity in Belarus. *Journal of Nutrition*, 139, pp.417S-21S.

Krebs Nancy F, Hambidge K Michael; Mazariegas Manolo and Westcott Jamie; Goco Norman; Wright Linda L; Kosothomas Marion; Tshefu Antoinette; Bose Carl; Pasha Omrana; Goldenberg Robert; Chomba Elwyn; Carlo Waldemar; Kindem Mark; Das Abhik; Hartwell Ty; McClure Elizabeth; Complementary Feeding Study Group.; (2011). Complementary feeding: a Global Network cluster randomized controlled trial. *BMC pediatrics*, 11, pp.4.

Kumordzie S M, Adu-Afarwuah S and Arimond M; Young R R; Adom T; Boatin R; Ocansey M E; Okronipa H; Prado E L; Oaks B M; Dewey K G;.(2019). Maternal and infant lipid-based nutritional supplementation increases height of Ghanaian children at 4-6 years only if the mother was not overweight before conception. *Journal of Nutrition*, 149(5), pp.847-855.

Leroy Jef L, Gutierrez Juan Pablo; Gadsden Paola and Gonzalez-Cossio Teresa; Hernandez Licona; Gonzalo; Rivera Juan. (2007). Conditional cash and in-kind transfers increase household total and food consumption in poor rural communities in Mexico. FASEB Journal, 21, pp.A54-A54.

Li N, Yan L J. L and Niu Wen Yi; Labarthe D; Feng Xiang Xian; Shi Jing Pu; Zhang Jian Xin; Zhang Rui Juan; Zhang Yu Hong; Chu Hong Ling; Neiman A; Engelgau M; Elliott P; Wu Yang Feng; Neal B. (2013). A large-scale cluster randomized trial to determine the effects of community-based dietary sodium reduction - the China Rural Health Initiative Sodium Reduction Study.. *American Heart Journal*, 166(5), pp.815-822.

Li Xian, Jan S and Yan L L; Hayes A; Chu Yun Bo; Wang Hai Jun; Feng Xiang Xian; Niu Wen Yi; He F J; Ma Jun; Han Yanbo; MacGregor G A; Wu Yang Feng. (2017). Cost and cost-effectiveness of a school-based education program to reduce salt intake in children and their families in China.. *PLoS ONE*, 12(9), pp.e0183033.

Low Jan W, Arimond Mary and Osman Nadia; Cunguara Benedito; Zano Filipe; Tschirley David. (2007). Ensuring the supply of and creating demand for a biofortified crop with a visible trait: lessons learned from the introduction of orange-fleshed sweet potato in drought-prone areas of Mozambique.. *Food and nutrition bulletin*, 28(2 Suppl), pp.S258-70.

Luttikhuis H O, Baur L and Jansen H; Shrewsbury V A; O'Malley C; Stolk R P; Summerbell C D. (2009). Interventions for treating obesity in children. , , pp..
Ma Yuan, Feng XiangXian and Ma Jun; He F J; Wang HaiJun; Zhang Jing; Xie WuXiang; Wu Tao; Yin YunJian; Yuan JianHui; MacGregor G A; Wu YangFeng;.. (2019). Social support, social network and salt-reduction behaviours in children: a substudy of the School-EduSalt trial.. *BMJ Open*, 9(6), pp.e028126.

Mahmudiono T, Nindya T S and Andrias D R; Megatsari H; Rosenkranz R R;.. (2016). The effectiveness of nutrition education for overweight/obese mothers with stunted children (NEO-MOM) in reducing the double burden of malnutrition in Indonesia: study protocol for a randomized controlled trial.. *BMC Public Health*, 16(486), pp..

Maluccio J A, Hoddinott J F; Behrman J F; Martorell R and Quisumbing A R; Stein A D;.. (2006). The Impact of Nutrition during Early Childhood on Education among Guatemalan Adults. .., pp..

Marlene Chakhtoura, Elie Akl and Asma Arabi; Sara El Ghandour; Khaled Shawwa; Ghada El Hajj;.. (2014). Effects of different doses of Vitamin D replacement in Middle Eastern and North African population: a systematic review and meta-analysis. .., pp..

Martin Richard M, Patel Rita and Kramer Michael S; Guthrie Lauren; Vilchuck Konstantin; Bogdanovich Natalia; Sergeichick Natalia; Gusina Nina; Foo Ying; Palmer Tom; Rifas-Shiman Sheryl L; Gillman Matthew W; Smith George Davey; Oken Emily;.. (2013). Effects of promoting longer-term and exclusive breastfeeding on adiposity and insulin-like growth factor-I at age 11.5 years: a randomized trial. *JAMA: Journal of the American Medical Association*, 309, pp.1005-1013.

Edoardo Masset, Lawrence Haddad and Alexander Cornelius ; Jairo Isaza-Castro ;. (2010). Protocol - What is the impact of interventions to increase agricultural production on childrens nutritional status?. , , pp..

Matias S L, Mridha M K; Paul R R; Sohrab Hussain and Vosti S A; Arnold C D; Dewey K G ;. (2016). Prenatal lipid-based nutrient supplements affect maternal anthropometric indicators only in certain subgroups of rural Bangladeshi women.. Journal of Nutrition, 146(9), pp.1775-1782.

Matias S L, Mridha M K; Young R T; Sohrab Hussain and Dewey K G ;. (2018). Daily maternal lipid-based nutrient supplementation with 20 mg iron, compared with iron and folic acid with 60 mg iron, resulted in lower iron status in late pregnancy but not at 6 months postpartum in either the mothers or their infants in Bangladesh.. Journal of Nutrition, 148(10), pp.1615-1624.

Mduduzi N N Mbuya 1 and Cynthia R Mataré 2; Naume V Tavengwa 1; Bernard Chasekwa 1; Robert Ntozini 1; Florence D Majo 1; Ancikaria Chigumira 3; Cynthia M Z Chasokela 3; Andrew J Prendergast 4; Lawrence H Moulton 5; Rebecca J Stoltzfus 2; Jean H Humphrey 5; SHINE Trial Team ;. (2019). Early Initiation and Exclusivity of Breastfeeding in Rural Zimbabwe: Impact of a Breastfeeding Intervention Delivered by Village Health Workers. Current Developments in Nutrition, 3(4), pp..

Meah S. (2001). A breastfeeding intervention increased breast feeding and reduced GI tract infections and atopic eczema. Evidence Based Nursing, , pp..
Mehdizadeh Hakkak, A and Nematy M; Khadem-Rezaiyan M; Norouzy A; Sardar M A; Vatanparast H.; (2019). IMPLEMENTING AND PILOT TESTING OF A CUSTOMIZED INTERVENTION TO INCREASE PHYSICAL ACTIVITY AND HEALTHY EATING AMONG PRESCHOOL CHILDREN: a RANDOMIZED CONTROLLED TRIAL. Clinical nutrition (Edinburgh and Scotland), 38, pp.S151-.

Mridha M K, Matias S L; Paul R R; Sohrab Hussain and Khan M S. A; Zakia Siddiqui ; Barkat Ullah ; Mostofa Sarker ; Mokbul Hossain ; Young R T; Arnold C D; Dewey K G.; (2017). Daily consumption of lipid-based nutrient supplements containing 250 micro g iodine does not increase urinary iodine concentrations in pregnant and postpartum women in Bangladesh.. Journal of Nutrition, 147(8), pp.1586-1592.

Nabulsi M, Hamadeh H and Tamim H ; Kabakian T ; Charafeddine L ; Yehya N ; Sinno D ; Sidani S ;. (2013). A complex breastfeeding promotion and support intervention in a developing country. BMC Public Health, 14(36), pp..

Nguyen P H, Lowe A E; Martorell R and Hieu Nguyen ; Hoa Pham ; Son Nguyen ; Harding K B; Neufeld L M; Reinhart G A; Ramakrishnan U ;. (2012). Rationale, design, methodology and sample characteristics for the Vietnam pre-conceptual micronutrient supplementation trial (PRECONCEPT): a randomized controlled study.. BMC Public Health, 12(898), pp..

Nguyen Phuong H, Kim Sunny S; Keithly Sarah C; Hajeebhoy Nemat and Tran Lan M; Ruel Marie T; Rawat Rahul ; Menon Purnima ;. (2014). Incorporating elements of social franchising in government health services improves the quality of infant and young child feeding counselling services at commune health centres in Vietnam.. Health Policy and Planning, 29(8), pp.1008-1020.

Nirmala Nair, Prasanta Tripathy and Sachdev H S; Sanghita Bhattacharyya; Rajkumar Gope; Sumitra Gagrai; Shibanand Rath; Suchitra Rath; Rajesh Sinha; Roy S S; Suhas Shewale; Vijay Singh; Aradhana Srivastava; Hemanta Pradhan; Costello A; Copas A; Skordis-Worrall J; Hagharparast-Bidgoli H; Saville N; Prost A; (2015). Participatory women's groups and counselling through home visits to improve child growth in rural eastern India: protocol for a cluster randomised controlled trial. **BMC Public Health**, 15(384), pp..

Nkonkile L L, Daviaud E and Jackson D; Chola L; Doherty T; Chopra M; Robberstad B; (2014). Costs of promoting exclusive breastfeeding at community level in three sites in South Africa. **Plos one**, 9, pp.e79784.

Null C, Stewart C P and Pickering A J; Dentz H N; Arnold B F; Arnold C D; Benjamin-Chung J; Clasen T; Dewey K G; Fernald L C. H; Hubbard A E; Kariger P; Lin A; Luby S P; Mertens A; Nghanga S M; Nyambane G; Ram P K; Colford J M; Jr.; (2018). Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster-randomised controlled trial. **Lancet Global Health**, 6(3), pp.e316-e329.

Ochoa A, Ochoa Aviles and A; Verstraeten R; Andrade Tenesaca; D S; Andrade Munoz; D J; Ramirez Jimbo; P L; Donoso Moscoso; S P; Kolsteren P; (2017). Process evaluation of the cluster randomized controlled trial activital-a school-based health promotion intervention. **Annals of nutrition & metabolism**, 71, pp.403-.

Ochoa A, Ochoa Aviles and A; Andrade Tenesaca; D S; Verstraeten R; Huybregts L; Lachat C; Ramirez Jimbo; P L; Andrade Munoz; D J; Donoso Moscoso; S P; (2017). Effect of the school-based health promotion intervention activital on dietary intake and waist circumference: a cluster randomized controlled trial. **Annals of nutrition & metabolism**, 71, pp.1272-1273.

Okronipa H, Arimond M and Young R R; Arnold C D; Adu-Afarwuah S; Tamakloe S M; Bentil H J; Ocansey M E; Kumordzie S M; Oaks B M; Dewey K G.; (2019). Exposure to a slightly sweet lipid-based nutrient supplement during early life does not increase the preference for or consumption of sweet foods and beverages by 4-6-y-old Ghanaian preschool children: follow-up of a randomized controlled trial. *Journal of Nutrition*, 149(3), pp.532-541.

Ota E, Tobe-Gai R and Mori R; Farrar D.; (2012). Antenatal dietary advice and supplementation to increase energy and protein intake. , , pp..

Phuong Hong Nguyen, Frongillo E A; Sanghvi T and Wable G; Mahmud Z; Lan Mai Tran; Aktar B; Kaosar Afsana; Alayon S; Ruel M T; Menon P.; (2018). Engagement of husbands in a maternal nutrition program substantially contributed to greater intake of micronutrient supplements and dietary diversity during pregnancy: results of a cluster-randomized program evaluation in Bangladesh. Journal of Nutrition, 148(8), pp.1352-1363.

Pickering A J, Null C and Winch P J; Mangwadu G; Arnold B F; Prendergast A J; Njinga S M; Rahman M; Ntozini R; Benjamin-Chung J; Stewart C P; Huda T M. N; Moulton L H; Colford J M; Jr; Luby S P; Humphrey J H.; (2019). The WASH Benefits and SHINE trials: interpretation of WASH intervention effects on linear growth and diarrhoea. Lancet Global Health, 7(8), pp.e1139-e1146.

Pinto Rafael Lavourinha, de Souza and Bárbara da Silva Nalin; Antunes Anna Beatriz Souza; De Cnop; Mara Lima; Sichieri Rosely; Cunha Diana Barbosa.; (2019). Papass clinical trial protocol: a multi-component school-based intervention study to increase acceptance and adherence to school feeding. BMC Public Health, 19, pp.N.PAG-N.PAG.

Prado Elizabeth L, Phuka John and Maleta Kenneth; Ashorn Per; Ashorn Ulla; Vosti Steve A; Dewey Kathryn G; (2016). Provision of lipid-based nutrient supplements from age 6 to 18 months does not affect infant development scores in a randomized trial in Malawi. *Maternal and Child Health Journal*, 20(10), pp.2199-2208.

Prawirohartono E P, Nystrom L and Ivarsson A; Stenlund H; Lind T .; (2011). The impact of prenatal vitamin A and zinc supplementation on growth of children up to 2 years of age in rural Java, Indonesia. , , pp..

Purnima Menon, Phuong Hong Nguyen and Saha K K; Adiba Khaled ; Sanghvi T ; Baker J ; Kaosar Afsana ; Raisul Haque ; Frongillo E A; Ruel M T; Rahul Rawat .; (2016). Combining intensive counseling by frontline workers with a nationwide mass media campaign has large differential impacts on complementary feeding practices but not on child growth: results of a cluster-randomized program evaluation in Bangladesh. *Journal of Nutrition*, 146(10), pp.2075-2084.

Quizan-Plata T, Meneses L V and Romero J E; Barragan C A; Moreno S G; Garcia M E. O; Lopez A E. ; (2012). Intervention to promote physical activity and dietary lifestyle changes in students attending public primary schools of Sonora Mexico. *FASEB journal*, 26, pp..

Nirmala Rao, Jin Sun and Jessie M S. Wong; Brendan Weekes ; Patrick Ip ; Sheldon Shaeffer ; Mary Young ; Mark Bray ; Eva Chen ; Diana Lee ; (2014). *Early childhood development and cognitive development in developing countries: A rigorous literature review*.. , , pp.. Available at: function URL() { [native code] }.

Susan Richter, Elyse Iruhiriye and Jessica Heckert ; Celeste Sununtnasuk ; Marie Ruel ; Jef Leroy ; Deanna Olney Ruel; (2018). Cost Study of the Preventing Malnutrition in Children under 2 Years of Age Approach in Burundi and Guatemala. , , pp..

(2002). More calories or more diversity?: an econometric evaluation of the impact of the PROGRESA and PROCAMPO transfer programs on food security in rural Mexico. Economic and Social Department, FAO, 2002, pp. Available at: function URL() {} [native code].

Ruth Hall, Donna Hornby and Steven Lawry; Aaron Leopold; Farai Mtero; Cyrus Samii; (2012). PROTOCOL: The Impact of Land Property Rights Interventions on Agricultural Productivity in Developing Countries: A Systematic Review. Campbell Systematic Reviews, , pp.1.

Saaka M, Oosthuizen J and Beatty S; (2009). Effect of joint iron and zinc supplementation on malarial infection and anaemia. , , pp..

Sanchez Hugo, Albala Cecilia and Lera Lydia; Castillo Jose Luis; Verdugo Renato; Lavados Manuel; Hertrampf Eva; Brito Alex; Allen Lindsay; Uauy Ricardo; (2011). Comparison of two modes of vitamin B12 supplementation on neuroconduction and cognitive function among older people living in Santiago, Chile: a cluster randomized controlled trial. a study protocol [ISRCTN 02694183]. Nutrition journal, 10, pp.100.

Sanchez H, Albala C and Lera L; Dangour A D; Uauy R;; (2013). Effectiveness of the National Program of Complementary Feeding for older adults in Chile on vitamin B12 status in older adults; Secondary outcome analysis from the CENEX Study (ISRCTN48153354). Nutrition Journal, 12, pp..

Naomi M Saville, Bhim P Shrestha; Sarah Style and Helen Harris-Fry; B James Beard; Aman Sengupta; Sonali Jha; Anjana Rai; Vikas Paudel; Anni-Maria Pulikki-Brannstrom; rew Copas; Jolene Skordis-Worrall; Bishnu Bh; ar; Rishi Neupane; Joanna Morrison; Lu Gram; Raghbendra Sah; Machhindra Basnet; Jayne Harthan; Dharma S Man; har
; David Osrin; Anthony Costello; (2013). The Low Birth Weight in South Asia Trial (LBWSAT): can birth weight in the plains of Nepal be cost-effectively increased using a behaviour change strategy (BSC) involving women’s groups alone or by BCS with either a food or cash transfer?. http://www.who.int/trialsearch/Trial2.aspx?TrialID=ISRCTN75964374, , pp..

Schmidt M K. (2001). The role of maternal nutrition in growth and health of Indonesian infants: a focus on vitamin A and iron.. The role of maternal nutrition in growth and health of Indonesian infants: a focus on vitamin A and iron, , pp.118-pp.

Samuel P Scott 1 and Laura E Murray-Kolb 1; Michael J Wenger 2; Shobha A Udipi 3; Padmini S Ghugre 3; Erick Boy 4; Jere D Haas 5; (2018). Cognitive Performance in Indian School-Going Adolescents Is Positively Affected by Consumption of Iron-Biofortified Pearl Millet: A 6-Month Randomized Controlled Efficacy Trial. , , pp..

Sinha B, Chowdhury R and Sankar M J; Martines J ; Taneja S ; Mazumder S ; Rollins N ; Bahl R ; Bhandari N ;. (2015). Interventions to improve breastfeeding outcomes: a systematic review and meta-analysis. , , pp..

Steyn Nelia P, de Villiers and Anniza; Gwebsushe Nomonde; Draper Catherine E; Hill Jillian; de Waal; Marina; Dalais Lucinda; Abrahams Zulfa; Lombard Carl; Lambert Estelle V. (2015). Did HealthKick, a randomised controlled trial primary school nutrition intervention improve dietary quality of children in low-income settings in South Africa? BMC public health, 15, pp.948.

Thome K, Taylor J E and Davis B ; Darko Osei R; Osei-Akoto I ;. (). Local Economy-wide Impact Evaluation (LEWIE) of Ghana’s Livelihood Empowerment Against Poverty (LEAP) Programme. pp..

Fahmida Tofail 1 and Lia Ch Fernald 2; Kishor K Das 3; Mahbubur Rahman 3; Tahmeed Ahmed 3; Kaniz K Jannat 3; Leanne Unicomb 3; Benjamin F Arnold 2; Sania Ashraf 3; Peter J Winch 4; Patricia Kariger 2; Christine P Stewart 5; John M Colford Jr 2; Stephen P Luby 6.; (2018). Effect of water quality, sanitation, hand washing, and nutritional interventions on child development in rural Bangladesh (WASH Benefits Bangladesh): a cluster-randomised controlled trial. Lancet Child and Adolescent Health, 2(4), pp.

Ton G, Velemma W and Desiere S; Weituschat S; D’Haese M; . (2016). EFFECTIVENESS OF CONTRACT FARMING FOR IMPROVING INCOME OF SMALLHOLDER FARMERS -Preliminary results of a systematic review-. In: , , pp..

Trehan I, Benzoni N S and Wang A Z; Bollinger L B; Ngoma T N; Chimimba U K; Stephenson K B; Agapova S E; Maleta K M; Manary M J; . (2015). Common beans and cowpeas as complementary foods to reduce environmental enteric dysfunction and stunting in Malawian children: study protocol for two randomized controlled trials. , , pp..

Tumwine J K, Nankabirwa V and Diallo H A; Engebretsen I M. S; Ndezei G; Bangirana P; Sanou A S; Kashala-Abotnes E; Boivin M; Giordani B; Elgen I B; Holding P; Kakooza-Mwesige A; Skylstad V; Nalugya J; Tylleskar T; Meda N; . (2018). Exclusive breastfeeding promotion and neuropsychological outcomes in 5-8 year old children from Uganda and Burkina Faso: Results from the PROMISE EBF cluster randomized trial. *PLoS ONE*, 13, pp..

van den Broek N, Dou L and Othman M; Neilson J P; Gülmezoglu A M; . (2010). Vitamin A supplementation during pregnancy for maternal and newborn outcomes. , , pp..

van den Broek N, Dou L and Othman M; Neilson J P; Gates S; Gülmezoglu A M; . (2010). Vitamin A supplementation during pregnancy for maternal and newborn outcomes. , , pp..

Joachim Vandercasteelen, Mekdim Dereje and Bart Minten; Alemayehu Seyoum; Taffesse; (2013). Scaling-up adoption of improved technologies: The impact of the promotion of row planting on farmers' teff yields in Ethiopia. : LICOS - Centre for Institutions and Economic Performance, KU Leuven.

Vilchis-Gil J, Klünder-Klünder M and Duque X; Flores-Huerta S;. (2016). Decreased body mass index in schoolchildren after yearlong information sessions with parents reinforced with web and mobile phone resources: Community trial. Journal of Medical Internet Research, 18, pp..

Weinhardt L S, Galvao L W; Mwenyekonde T and Grande K M; Stevens P ; Yan A F; Mkandawire-Valhmu L ; Masanjala W ; Kibicho J ; Ngui E ; Emer L ; Watkins S C; (2014). Methods and protocol of a mixed method quasi-experiment to evaluate the effects of a structural economic and food security intervention on HIV vulnerability in rural Malawi: the SAGE4Health Study. *SpringerPlus*, 3(296), pp..

Xu Fei, Ware R S and Tse LapAh ; Wang ZhiYong ; Hong Xin ; Song AiJu ; Li JieQuan ; Wang Y F;. (2012). A school-based comprehensive lifestyle intervention among Chinese kids against obesity (CLICKObesity): rationale, design and methodology of a randomized controlled trial in Nanjing city, China. *BMC Public Health*, 12(316), pp..

Zhang P, He F J and Li Y ; Li C ; Wu J ; Ma J ; Zhang B ; Wang H ; Li Y ; Han J ; Luo R ; He J ; Li X ; Liu Y ; Wang C ; Tan M ; MacGregor G A; Li X ;. (2020). Reducing salt intake in China with “Action on salt China” (ASC): Protocol for campaigns and randomized controlled trials. *JMIR Research Protocols*, 9, pp..

Ziaei S, Rahman A and Raqib R ; Lonnerdal B ; Ekstrom E C;. (2016). A prenatal multiple micronutrient supplement produces higher maternal vitamin B-12 concentrations and similar folate, ferritin, and zinc concentrations as the standard 60-mg iron plus 400-micro G folic acid supplement in rural Bangladeshi women. *Journal of Nutrition*, 146(12), pp.2520-2529.
Other

CIAT, 2017. CIAT Strategic Initiative on Sustainable Food Systems.

Global Panel on Agriculture and Food Systems for Nutrition, 2017. Policy Actions to support enhanced consumer behavior for high quality diets.

R4D, 2019. Tracking aid for the WHA nutrition targets - Progress towards the global nutrition goals between 2015-2017. July 2019

Snilstveit, B., Bhatia, R., Rankin, K. and Leach, B., 2017. 3ie evidence gap maps.

UNSCN, 2019. Food environments: Where people meet the food system

Appendixes

Online appendix A: Additional methods detail

Online appendix B: Example search string
https://www.3ieimpact.org/sites/default/files/2021-01/EGM16-Online-appendix-B-Search-strategy.pdf

Online appendix C: Data extraction codebook
https://www.3ieimpact.org/sites/default/files/2021-01/EGM16-Online-appendix-C-Data-extraction-codebook.pdf

Online appendix D: Summary of the systematic review critical appraisal tool

Online appendix E: Table summaries of results
https://www.3ieimpact.org/sites/default/files/2021-01/EGM16-Online-appendix-E-Table-summaries-of-results.pdf

Online appendix F: Additional analysis - Global Nutrition Report 2020 comparison

Online appendix G: Examples for using this EGM to inform practice or research
https://www.3ieimpact.org/sites/default/files/2021-01/EGM16-Online-appendix-G-Examples-for-using-this-EGM-to-inform-practice-or-research.pdf
Other publications in the 3ie Evidence Gap Map Report Series

The following papers are available from http://www.3ieimpact.org/evidence-hub/evidence-gap-maps

In the last few years, significant efforts have been made to improve food systems to facilitate better food security and nutrition outcomes. As a result, there is a vast amount of evidence on what works, but navigating the research is complicated, making it difficult for decision makers to use the evidence. This evidence gap map report addresses this challenge by providing an overview of the literature on food systems interventions. It reports on evidence from all key areas and intervention types within the food system and also identifies potential primary and synthesis evidence gaps.

Evidence Gap Map Report Series
International Initiative for Impact Evaluation
215-216, 2nd Floor, Rectangle One
D-4, Saket District Center
New Delhi – 110017
India
3ie@3ieimpact.org
Tel: +91 11 4989 4444